MEASUREMENT OF THE HEAVY-ION COLLISION EVENT CHARACTERISTICS WITH THE ATLAS EXPERIMENT AT THE LHC
DOI:
https://doi.org/10.7494/csci.2015.16.1.39Keywords:
high energy physics, ATLAS experiment, lead-lead collisions, heavy-ion collisions, QGP, elliptic flow, Grid computingAbstract
Heavy-ion collisions at extreme energies can reproduce conditionspresent in the early Universe. The new state of very dense and hotmatter of deconfined quarks and gluons, called the Quark GluonPlasma~(QGP), is observed. This state is characterised by very lowviscosity resembling the properties of a perfect fluid. In suchmedium, the density fluctuations can be easily spread. In experimentalpractice, the size of these fluctuations is estimated by measuring theangular correlation of produced particles. The aim of this paper isto present measurements of the azimuthal anisotropy of chargedparticles produced in heavy-ion collisions using the ATLAS detector atthe LHC. Two measurement techniques are presented and compared.Downloads
References
ACK Cyfronet AGH. http://www.cyfronet.krakow.pl/.
ATLAS Collaboration: The ATLAS Experiment at the CERN Large Hadron Collider. JINST, vol. 3, p. S08003, 2008. http://dx.doi.org/10.1088/1748-0221/3/08/S08003.
ATLAS Collaboration: Performance of the ATLAS Trigger System in 2010. Eur. Phys. J., vol. C72, p. 1849, 2012. http://dx.doi.org/10.1140/epjc/s10052-011-1849-1.
ATLAS Collaboration: Measurement of the centrality and pseudorapidity dependence of the integrated elliptic flow in lead-lead collisions at √sNN=2.76 TeV with the ATLAS detector. 2014.
Brun R., Rademakers F.: ROOT an object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 389(12), pp. 81–86, 1997. ISSN 0168-9002. New Computing Techniques in Physics Research V. http://dx.doi.org/http://dx.doi.org/10.1016/S0168-9002(97)00048-X.
Brüning O. S., Collier P., Lebrun P., Meyers S., Ostojic R., Poole J., Proudlock P.: LHC Design Report. CERN, Geneva, 2004.
Chaudhuri A. K.: Dissipative hydrodynamics and heavy-ion collisions. Journal of Physics G: Nuclear and Particle Physics, vol. 35(10), p. 104015, 2008. http://stacks.iop.org/0954-3899/35/i=10/a=104015.
ALICE Collaboration: Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV. Phys. Rev. Lett., vol. 105, p. 252302, 2010. http://dx.doi.org/10.1103/PhysRevLett.105.252302.
ATLAS Collaboration: Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector. Phys.Lett., vol. B707, pp. 330–348, 2012. URL http://dx.doi.org/10.10-106.1/5j.physletb.2011.12.056.
ATLAS Collaboration: Observation of a new particle in the search for the Standard Model Higgs Boson with the ATLAS detector at the LHC. Phys. Lett., vol. B716, pp. 1–29, 2012. ISSN 0370-2693. http://dx.doi.org/http://dx.doi.org/10.1016/j.physletb.2012.08.020.
CMS Collaboration: Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV. Phys. Rev., vol. C87, p. 014902, 2013. http://dx.doi.org/10.1103/PhysRevC.87.014902.
Evans L., Bryant P.: LHC Machine. Journal of Instrumentation, vol. 3(08), p. S08001, 2008. http://stacks.iop.org/1748-0221/3/i=08/a=S08001.
Huovinen P., Kolb P., Heinz U. W., Ruuskanen P., Voloshin S.: Radial and elliptic flow at RHIC: Further predictions. Phys. Lett., vol. B503, pp. 58–64, 2001. http://dx.doi.org/10.1016/S0370-2693(01)00219-2.
Kovtun P. K., Son D. T., Starinets A. O.: Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics. Phys. Rev. Lett., vol. 94, p. 111601, 2005. http://dx.doi.org/10.1103/PhysRevLett.94.111601.
Lunin O., Mathur S.D.: Statistical interpretation of Bekenstein entropy for systems with a stretched horizon. Phys. Rev. Lett., vol. 88, p. 211303, 2002. http://dx.doi.org/10.1103/PhysRevLett.88.211303.
Luzum M.: Flow fluctuations and long-range correlations: elliptic flow and beyond. J. Phys., vol. G38, p. 124026, 2011. http://dx.doi.org/10.1088/0954-3899/38/12/124026.
Luzum M., Ollitrault J.Y.: Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions. Phys. Rev., vol. C87, p. 044907, 2013. http://dx.doi.org/10.1103/PhysRevC.87.044907.
Maeno T.: PanDA: distributed production and distributed analysis system for ATLAS. Journal of Physics: Conference Series, vol. 119(6), p. 062036, 2008. http://stacks.iop.org/1742-6596/119/i=6/a=062036.
Muño P. C., the Atlas Collaboration: Overview of Recent ATLAS Physics Results. Journal of Physics: Conference Series, vol. 447(1), p. 012014, 2013. http://stacks.iop.org/1742-6596/447/i=1/a=012014.
Poskanzer A. M., Voloshin S. A.: Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev., vol. C58, pp. 1671–1678, 1998. http://dx.doi.org/10.1103/PhysRevC.58.1671.
Qin G. Y., Petersen H., Bass S. A., Müller B.: Translation of collision geometry fluctuations into momentum anisotropies in relativistic heavy-ion collisions. Phys. Rev. C, vol. 82, p. 064903, 2010. http://dx.doi.org/10.1103/PhysRevC.82.064903.
Qiu Z., Heinz U. W.: Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs. Phys. Rev., vol. C84, p. 024911, 2011. http://dx.doi.org/10.1103/PhysRevC.84.024911.
Romatschke P.: New Developments in Relativistic Viscous Hydrodynamics. Int. J. Mod. Phys., vol. E19, pp. 1–53, 2010. http://dx.doi.org/10.1142/S0218301310014613.
Schenke B., Jeon S., and Gale C.: Anisotropic flow in √s = 2.76 TeV Pb+Pb collisions at the LHC. Phys.Lett., vol. B702, pp. 59–63, 2011. URL http://dx.doi.org/10.1016/j.physletb.2011.06.065.
Snellings R.: Anisotropic flow from RHIC to the LHC. Eur. Phys. J., vol. C49, pp. 87–90, 2007. http://dx.doi.org/10.1140/epjc/s10052-006-0107-4.
Song H.: Hydrodynamic Modeling and the QGP Shear Viscosity. Eur. Phys. J., vol. A48, p. 163, 2012. http://dx.doi.org/10.1140/epja/i2012-12163-9.
STAR Collaboration: Elliptic flow from two and four particle correlations in Au+Au collisions at √sNN = 130GeV. Phys.Rev., vol. C66, p. 034904, 2002. URL http://dx.doi.org/10.1103/PhysRevC.66.034904.
Steinberg P.: What have we learned about the Quark-Gluon Plasma with the ATLAS detector at the LHC? Nucl. Phys., vol. A, 2014.
Voloshin S., Zhang Y.: Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions. Zeitschrift für Physik C Particles and Fields, vol. 70(4), pp. 665–671, 1996. ISSN 0170-9739. http://dx.doi.org/10.1007/s002880050141.
Voloshin S. A., Poskanzer A. M., Snellings R.: Collective Phenomena in NonCentral Nuclear Collisions, Landolt-Börnstein – Group I Elementary Particles, Nuclei and Atoms, vol. 23. Springer, Berlin Heidelberg, 2010. ISBN 978-3-642-01538-0. http://dx.doi.org/10.1007/978-3-642-01539-7_10.