Large-scale Research on Quality of Experience (QoE) Algorithms

Authors

  • Mikolaj Leszczuk
  • Blazej Szczerba
  • Andrzej Glowacz
  • Jan Derkacz
  • Andrzej Dziech
  • Piotr Romaniak

DOI:

https://doi.org/10.7494/csci.2013.14.1.63

Keywords:

Video, compression, QoE, MOS, H.264

Abstract

The large variety of video data sources means variability not only in terms ofincluded content, but also in terms of quality. Therefore, quality assessment pro-vides an additional dimension. The paper describes a comprehensive evaluationexperiment on perceived video quality. Consequently, in summary, 19 200 000video frames will be processed. Given the scale of the experiment, it is setup on a computer cluster in order to accelerate the calculations significantly.This work on Quality of Experience (QoE) is synchronized with that conductedby the Video Quality Experts Group (VQEG), in particular the Joint EffortsGroup (JEG) – Hybrid group project.

Downloads

Download data is not yet available.

References

Barkowsky M., Bialkowski J., Eskofier B., Bitto R., Kaup A.: Temporal trajectory aware video quality measure. Selected Topics in Signal Processing, 3(2): 266–279, 2009.

Barkowsky M., Staelens N., Janowski L., Koudota Y., Leszczuk M., Urvoy M., Hummelbrunner P., Sedano I., Brunnstr¨om K.: Subjective experiment dataset for joint development of hybrid video quality measurement algorithms. In EuroITV 10th European Conference on Interactive TV, pp. 254–257, Berlin, July 2012. Fraunhofer Institute for Open Communication Systems, FOKUS.

Barkowsky M., Staelens N., Janowski L.: The JEG Hybrid Group. VQEG. http://www.its.bldrdoc.gov/vqeg/project-pages/jeg/jeg.aspx. CDVL. The Consumer Digital Video Library. http://www.cdvl.org/.

Leszczuk M., Głowacz A., Derkacz J., Dziech A., Romaniak P., Szczerba B.: Large-scale video compression research work on quality of experience (QoE) evaluation for VQEG JEG-Hybrid project. In 6th International Symposium on signal, Image, Video and Communications ISIVC, pp. 188–191, Valenciennes, France, Jul 2012.

Mu M., Romaniak P., Mauthe A., Leszczuk M., Janowski L., Cerqueira E.: Framework for the integrated video quality assessment. Multimedia Tools and Applications, pp. 1–31, 2012. 10.1007/s11042-011-0946-3.

Seshadrinathan K., Bovik A. C.: Motion tuned spatio-temporal quality assessment of natural videos. Image Processing, 19(2): 335–350, 2010.

Sheikh H. R.: Bovik, A visual information fidelity approach to video quality assessment. In The First International Workshop on Video Processing and Quality Metrics for Consumer Electronics, pp. 23–25, 2005.

International Telecomunication Union: ITU-T P.910, Subjective video quality assessment methods for multimedia applications. 1999.

VQEG. Test-Plan for Evaluation of Video Quality Models for Use with High Definition TV Content.

VQEG. The Video Quality Experts Group. http://www.vqeg.org/.

Wang Z., Lu L., Bovik A. C.: Video quality assessment based on structural distortion measurement. Signal Processing: Image Communication, 19(2):121–13, 2004.

Winkler S.: Digital Video Quality – Vision Models and Metrics. John Wiley & Sons, Ltd. 2005.

Wolf S., Pinson M. H.: Spatial-temporal distortion metrics for in-service quality monitoring of any digital video system. In Proc. SPIE, 3845:266–277, 1999.

Downloads

Published

2013-03-13

Issue

Section

Articles

How to Cite

Large-scale Research on Quality of Experience (QoE) Algorithms. (2013). Computer Science, 14(1), 63. https://doi.org/10.7494/csci.2013.14.1.63