MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AMORPHOUS/CRYSTALLINE DUCTILE LIQUID IMMISCIBLE Fe-Si-B-In ALLOY PRODUCED BY TWO-COMPONENT MELT-SPINNING
DOI:
https://doi.org/10.7494/mafe.2017.43.1.57Keywords:
metallic glasses, X-ray diffraction (XRD), scanning electron microscopy (SEM), tensile test, ductilityAbstract
The two-component melt-spun (TCMS) Fe71.25Si9.5B14.25In5 alloy was produced from Fe75Si10B15 and Fe67.5Si9B13.5In10 alloys. The microstructure of the TCMS alloy was investigated by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). A tensile test of the alloy resulted in a tensile strength of Rm = 1040 MPa, yield strength Re = 919 MPa, total plastic elongation etot = 3.29%, and traces of plastic deformation on the surface of the Fe-Si-B-In TCMS sample. Microstructural analysis of the amorphous/crystalline composite and tensile sample free surface show the reason for the ductility of the sample in relation to the Fe75Si10B15 alloy.Downloads
References
Chang H.J., Yook W., Park E.S., Kyeong J.S., Kim D.H.: Synthesis of metallic glass composites using phase separation phenomena. Acta Materialia, 58 (2010), 2483–2491
Kuan S.Y., Chou H.S., Liu M.C., Du X.H., Huang J.C.: Micromechanical response for the amorphous/amorphous nanolaminates. Intermetallics, 18 (2010), 2453–2457
Mattern N., Gemming T., Thomas J., Goerigk G., Franz H., Eckert J.: Phase separation in Ni-Nb-Y metallic glasses. Journal of Alloys and Compounds, 495 (2010), 299–304
Kim D.H., Kim W.T., Park E.S., Mattern N., Ecker J.: Phase separation in metallic glasses. Progress in Materials Science 58 (2013), 1103–1172
Ziewiec K., Prusik K., Bryła K., Ziewiec A.: Microstructure of the Fe-Ni-P melt-spun ribbons produced from the single-chamber and from the double-chamber crucibles. Solid State Phenomena, 203–204 (2013), 361–367
Ziewiec K., Błachowski A., Ruebenbauer K., Ziewiec A., Prusik K., Latuch J., Zięba M., Bryła K.: Microstructure of the Ni-Fe-Cu-P melt-spun ribbons produced from the single-chamber and from the double-chamber crucibles. Journal of Alloys and Compounds, 615 (2014), S29–S34
Różycka M., Ziewiec K., Błachowski A., Ruebenbauer K., Prusik K.: Microstructure and fracture surface of the two-component melt-spun amorphous/amorphous composite. Journal of Non-Crystalline Solids, 412 (2015), 49–52
Ziewiec K., Wojciechowska M., Błachowski A., Ruebenbauer K., Jankowska-Sumara I., Prusik K., Mucha D., Latuch J.: Microstructure, fracture, and thermal stability of Ni-Fe-Cu-P-B two-phase amorphous composite produced from the double-chamber crucible. Intermetallics, 65 (2015), 15–21
He J., Jiang H., Chen S., Zhao J., Zhao L.: Liquid phase separation in immiscible Ag-Ni-Nb alloy and formation of crystalline/amorphous composite. Journal of Non-Crystalline Solids, 357 (2011), 3561–3564
He J., Li H., Yang B., Zhao J., Zhang H., Hu Z.: Liquid phase separation and microstructure characterization in a designed Al-based amorphous matrix composite with spherical crystalline particle. Journal of Alloys and Compounds, 489 (2010), 535–540
Nagase T., Suzuki M., Tanaka T.: Amorphous phase formation in Fe-Ag-based immiscible alloys. Journal of Alloys and Compounds, 619 (2015), 311–318
Ziewiec K., Kędzierski Z.: The microstructure development in Fe32Cu20Ni28P10Si5B5 immiscible alloy and possibilities of formation of amorphous/crystalline composite. Journal of Alloys and Compounds, 480 (2009), 306–310
Ziewiec K.: Characterization of immiscible Ni78Ag2P20 alloy and formation of amorphous/crystalline composite. Journal of Non-Crystalline Solids, 355 (2009), 2540–2543
Ziewiec K., Kędzierski Z., Zielińska-Lipiec A., Stępiński J., Kąc S.: Formation properties and microstructure of amorphous/crystalline composite Ag20Cu30Ti50 alloy using miscibility gap. Journal of Alloys
and Compounds, 482 (2009), 114–117
Ziewiec K., Malczewski P., Boczkal G., Prusik K.: Formation and properties of amorphous/crystalline ductile composites in Ni-Ag-P immiscible alloys. Solid State Phenomena,186 (2012), 216–221
Luborsky F.E., Becker J.J., Walter J.L., Liebermann H.H.: Formation and magnetic properties of Fe-B-Si amorphous alloys. IEEE Transactions on Magnetics, 3 (1979), 1146–1149
® Metglas 2605 SA1 Iron Based Alloy, Metglass® Inc., 440 Allied Dr. Conway, SC – 29526
Suwa Y., Agatsuma S., Hashi S., Ishiyama K.: Study of strain sensor using FeSiB Magnetostrictive thin film. IEEE Transactions on Magnetics, 46, 2 (2010), 666–669
Chiriac H., Marinescu C.S.: New position sensor based on ultra-acoustic standing waves in FeSiB amorphous wires. Sensors and Actuators A, 81 (2000) 174–175
Li S., Horikawa S., Park M., Chai Y., Vodyanoy V.J., Chin B.A.: Amorphous metallic glass biosensors. Intermetallics, 30 (2012), 80–85
Poletti M.G., Battezzati L.: Assessment of the ternary Fe-Si-B phase diagram. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 43 (2013), 40–47
Boer F.R., Boom R., Mattens W.C.M., Miedema A.R., Niessen A.K.: Cohesion in metals: transition metal alloys. Cohesion and structure, vol. 1. Elsevier Science, Amsterdam 1988
Takeuchi A., Inoue A.: Mixing enthalpy of liquid phase calculated by Miedema's scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys, Intermetallics, 18, 9 (2010), 1779–1789
Ziewiec K., Bryła K., Błachowski A., Ruebenbauer K., Mucha D.: Characterization of microstructures and amorphization in Ni-Cu-Fe-P system. Journal of Alloys and Compounds, 483 (2009), 585–588
Kovaleva L.A., Zinnatullin R.R., Mullayanov A.I., Mavletov M.V., Blagochinnov V.N.: Microstructure evolution of water-oil emulsions in high-frequency and microwave electromagnetic fields. High Temperature, 51, 6 (2013), 870–872