CHARACTERIZATION OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LASER-WELDED STAINLESS STEELS

Authors

  • Damian Piotr Koclęga AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science http://orcid.org/0000-0002-0111-4419
  • Agnieszka Radziszewska AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science
  • Sławomir Kąc AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science
  • Włodzimierz Zowczak Kielce University of Technology, Faculty of Mechatronics and Machine Desing
  • Aleksandra Dębowska AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science
  • Mateusz Jędrusik AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science
  • Paweł Petrzak AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science

DOI:

https://doi.org/10.7494/mafe.2016.42.4.213

Keywords:

laser welding, stainless steel, microstructure, chemical composition, hardness

Abstract

This work presents the laser welding of dissimilar X12CrCoWVNbN12-2-2 and X10CrNi18-10 steels. This system is of interest, as laser welding offers new flexibility in the joining of metals and laser welds (LWs) and are usually of high quality; they are obtained only after the optimization of process parameters. The aim of the work was to investigate the microstructure, chemical composition, and hardness changes of laser-welded steels. After laser welding, two zones were generated in the processed materials: a fusion zone and a heat-affected zone. Due to solidification, a refinement of the microstructure occurred in the fusion zone. Examinations of the chemical composition of particular melted areas showed the occurrence of Nb-rich precipitations. The laser welding of steels led to increased hardness in the fusion zone (about 240–530 HV0.3).

Downloads

Download data is not yet available.

References

Zhu F.: Microstructural Evolution in Austenitic Stainless Steels for Extended Life Power Station Applications. Ph.D. Thesis, Loughborough University, 2011

Pańcikiewicz K., Tuz L., Ziewiec A., Żurek Z., Zielińska-Lipiec A., Kajda P.: Selected aspects of the welding alloys used at high temperature. In: Hernas A., Mazur H., Pasternak J., Bloki o nadkrytycznych parametrach

pracy: nowe materiały hutnicze, technologie wykonania, procesy degradacji oraz ocena trwałości elementów ciśnieniowych kotła. Usługi Komputerowe i Poligraficzne, Gębka Jan, Gębka Dariusz, Bełchatów 2015, 307–316

Chehaibou A.: Metallurgical weldability of stainless steels. Welding International, 20, 7 (2006), 553–556

Nikulina A.A., Bataev A.A., Smirnov A.I., Popelyukh A.I., Burov V.G., Veselov S.V.: Microstructure and fracture behaviour of flash butt welds between dissimilar steels. Science and Technology of Welding and Joining, 20, 2 (2015), 138–144

Łomozik M., Zeman M., Brózda J.: Modern martensitic steels for power industry. Archives of Civil and Mechanical Engineering, 12 (2012), 49–59

Yin Y., Faulkner R., Starr F.: Austenitic steels and alloys for power plants. Structural Alloys for Power Plants Procedia, 45 (2014), 105–152

Kwok C.T., Lo K.H., Chan W.K., Cheng F.T., Man H.C.: Effect of laser surface melting on intergranular corrosion behaviour of aged austenitic and duplex stainless steels. Corrosion Science, 53, 4 (2011), 1581–1591

Nasery Isfahany A., Saghafian H., Borhani G.: The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel. Journal of Alloys and Compounds, 509, 9 (2011), 3931–3936

Victor B.: Custom beam Shaping for High-Power Fiber Laser Welding. Welding Journal, 90, 6 (2011), 8–17

Lalik S., Adamski J., Balcerzyk A.: Testing of Welded Joints of Gas-Tight Pipe Walls Made of New Generation Martensitic Steel Type VM12-SHC. In: Szczotok A., Szkliniarz A., Mendala J. (eds.), Technologies and

Properties of Modern Utility Materials XXIII, 2016, 71–74

Speicher M., Maile K., Klenk A.: Weld Behavior of Martensitic Steels and Ni-based Alloys for High Temperature Components. Procedia Engineering, 55 (2013), 414–420

Abanga R., Liska A., Krautza H.J.: Fireside corrosion of superheater materials under oxy-coal firing conditions. Energy Procedia, 40 (2013), 304–311

Scendo M., Chat M., Antoszewski B.: Oxidation Behaviour of Laser Welding of TP347HFG and VM12-SHC Stainless Steels. International Journal of Electrochemistry Science, 10 (2015), 6359–6377

Blicharski M.: Stale austenityczne odporne na pełzanie [Creep resistant austenitic stainless steels]. In: Hernas A., Pasternak J. (eds.), Powerwelding 2013: III Międzynarodowa naukowo-techniczna konferencja

spawalnicza: materiały i technologie stosowane w budowie kotłów o parametrach nadkrytycznych o temperaturze pary do 700°C. Ostaniec, 3–4 października 2013. RAFAKO, Polskie Towarzystwo Spawalnicze, Gliwice 2013

Tasak E.: Metalurgia spawania. Wydawnictwo JAK, Kraków 2008

Scheaffler A.L.: Constitution diagram for stainless steel weld metal. Metal Progress, 56, 11 (1949), 680–680B

Kotecki D.J., Siewert T.A.: WRC-1992 constitution diagram for stainless steel weld metals: A modification of the WRC-1988 diagram. Welding Journal, 71 (5) 1992, 171–178

Downloads

Published

2019-10-09

How to Cite

Koclęga, D. P., Radziszewska, A., Kąc, S., Zowczak, W., Dębowska, A., Jędrusik, M., & Petrzak, P. (2019). CHARACTERIZATION OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LASER-WELDED STAINLESS STEELS. Metallurgy and Foundry Engineering, 42(4), 213. https://doi.org/10.7494/mafe.2016.42.4.213

Issue

Section

Articles

Most read articles by the same author(s)