The Influence of the Knock-out Additive on the Mechanical Properties of Cores Made in the Core Blowing Process

Authors

  • Artur Bobrowski AGH University of Science and Technology
  • Jakub Kowalski AGH University of Krakow

DOI:

https://doi.org/10.7494/jcme.2026.10.S1.%25p

Keywords:

foundry, core sand, blowing process, inorganic binder, knocking-out, perlite ore

Abstract

The article presents the results of research on the effect of an additive improving shakeout (perlite ore with a specified grain size) on the mechanical properties of cores produced by the blowing process. The study was conducted on cores (standard specimens for tensile strength testing) made from core sands with varying amounts of loosening additive, depending on the core box temperature and shooting time, at a constant operating pressure of the shooting machine. The temperature of the core box at which the cores achieved the best mechanical properties was identified, and the necessity of optimizing both the amount of perlite ore additive and the binder content in the core sand to ensure the required mechanical properties of the cores was demonstrated.

Downloads

Download data is not yet available.

References

[1] Major-Gabryś K.A., Grabarczyk A., Dobosz S.M., Jakubski J.,Morek J. & Beňo J. (2018). Measurement of molding sand elasticity. Journal of Casting & Materials Engineering, 2(2), 38–44. DOI: https://doi.org/10.7494/jcme.2018.2.2.38.

[2] Dańko R. & Jamrozowicz Ł. (2017). Density distribution and resin migration investigations in samples of sand core made by blowing method. Journal of Casting & Materials Engineering, 1(3), 70–73. DOI: https://doi.org/10.7494/jcme.2017.1.3.70.

[3] Dobosz S.M., & Major-Gabryś K. (2008). The mechanism of improving the knock-out properties of moulding sands with water glass. Archives of Foundry Engineering, 8(1), 37–42.

[4] Holtzer M., Drożyński D., Bobrowski A. & Plaza W. (2014). Influence of binding rates on strength properties of moulding sands with the GEOPOL binder. Archives of Foundry Engineering, 14(1), 37–40. DOI: https://doi.org/10.2478/afe-2014-0009.

[5] Bobrowski A., Holtze, M., Żymankowska-Kumon S. & Danko R. (2015). Harmfulness assessment of moulding sands with a geopolymer binder and a new hardener, in an aspect of the emission of substances from the BTEX Group. Archives of Metallurgy and Materials, 60(1), 341–344, https://doi.org/10.1515/amm-2015-0056.

[6] Izdebska-Szanda I., Żmudzińska M., Faber J. & Perszewska K. (2013). Aspekt ekologiczny mas formierskich z nowymi spoiwami nieorganicznymi w procesie zalewania form ciekłym metalem. Prace Instytutu Odlewnictwa LIII(4), 71–83. DOI:https://doi.org/10.7356/iod.2013.23.

[7] Izdebska-Szanda I. & Baliński A. (2011). New generation of ecological silicate binders. Procedia Engineering, 10, 887–893. DOI: https://doi.org/10.1016/j.proeng.2011.04.146.

[8] Izdebska-Szanda I., Kamińska J., Angrecki M., Palma A. & Stefański Z. (2017). The effect of additive “B” on the properties of foundry sands with hydrated sodium silicate made by Floster technology. Archives of Foundry Engineering, 17(2), 31–34. DOI: https://doi.org/10.1515/afe-2017-0046.

[9] Stachowicz M. & Granat K. (2013). Pochłanianie mikrofal przez nieutwardzone masy formierskie ze szkłem wodnym. Archives of Foundry Engineering, 13(Spec. Iss. 1), 169–174. URL: https://bibliotekanauki.pl/articles/379879 [25.10.2025].

[10] Stachowicz M., Granat K. & Małachowska A. (2014). Porównanie metod klasycznych i nowoczesnej mikrofalowej wytwarzania rdzeni z mas ze szkłem wodnym. Archives of Foundry Engineering, 14(Spec. Iss. 2), 83–88. URL: https://bibliotekanauki.pl/articles/381848 [25.10.2025].

[11] Dobosz S.M. & Major-Gabryś K. (2006). Samoutwardzalne masy ze szkłem wodnym i nowym utwardzaczem. Inżynieria Materiałowa, 27(3), 576–579.

[12] Granat K., Nowak D., Pigiel M., Stachowicz M. & Wikiera R. (2008). The influence of microwave heating and water glass kind on the properties of molding sands. Archives of Foundry Engineering, 8 (Spec. Iss. 1), 119–122.

[13] Granat K., Nowak D., Pigiel M., Stachowicz M. & Wikiera R. (2007). The influence of microwave curing time and water glass kind on the properties of molding sands. Archives of Foundry Engineering, 7(4), 79–82.

[14] Samar M. & Saxena S. (2016). Study of chemical and physical properties of perlite and its application in India. International Journal of Science Technology and Management, 5(4), 70–80. URL: https://www.ijstm.com/images/short_pdf/1460020555_434V.pdf [25.10.2025].

[15] Austin G.S., & Barker J.M. (1998). Commercial perlite deposits of New Mexico and North America. In: Mack G.H., Austin G.S., Barker & J.M. (Eds.), Las Cruces Country II , New Mexico Geological Society, 49th Annual Fall Field Conference Guidebook, pp. 271–277. DOI: https://doi.org/10.56577/FFC-49.271.

[16] Bagdassarov N., Ritter F. & Yane Y. (1999). Kinetics of perlite glasses degassing TG and DSC analysis. Glass Science and Technology, 72(9), 277–290.

[17] Derkowski A., Drits V.A. & McCarty D.K. (2012). Rehydration in a dehydrated-dehydroxylated smectite in environment of flow water vapor content. American Mineralogist, 97(1), 110–127. DOI: https://doi.org/10.2138/am.2012.3872.

[18] Bobrowski A., Kaczmarska K., Sitarz M., Drożyński D., Leśniak M., Grabowska B. & Nowak D. (2021). Dehydroxylation of perlite and vermiculite: impact on improving the knock-out properties of moulding and core sand with an inorganic binder. Materials, 14(11), 2946. DOI: https://doi.org/10.3390/ma14112946.

[19] Inorganic sets the standard: Emission-free casting. URL: https://www.ha-group.com/en/products-and-services/products/inorganic-binder-systems/ [18.10.2025].

[20] Bobrowski A., Drożyński D. & Grabowska B. (2024). The influence of the matrix grain size and mineral addition on improving the knock-out properties of molding sands with an inorganic binder. Applied Science, 14(8), 3185. DOI: https://doi.org/10.3390/app14083185.

[21] Bobrowski A. (2018). Zjawisko dehydroksylacji wybranych materiałów mineralnych z grupy glinokrzemianów jako czynnik determinujący poprawę wybijalności mas formierskich i rdzeniowych ze spoiwem nieorganicznym. Wydawnictwo Archives of Foundry Engineering, Katowice-Gliwice.

[22] GEOPOL. https://www.geopol-info.com/ [18.10.2025].

[23] Uniwersalna maszyna do wykonywania próbek testowych i małych rdzeni w technologii Hot-Box, Cold-Box, Anorganik, CO2. URL: https://multiserw-morek.pl/produkt/uniwersalna-maszyna-do-wykonywania-probek-testowych/ [18.10.2025].

[24] Supplier certificate. DB Cargo Polska. Piasek formierski 2K wg: PN-85 H-11001.

[25] Polska norma PN-85/H-11001: Odlewnicze materiały formierskie – Kwarcowe piaski formierskie.

[26] Urządzenie LRu-2e do badania wytrzymałości mas formierskich. URL: https://multiserw-morek.pl/produkt/urzadzenie-lru-2e-do-badania-wytrzymalosci-mas-formierskich/ [18.10.2025].

Downloads

Published

2025-12-23

Issue

Section

Articles

How to Cite

Bobrowski, A., & Kowalski , J. (2025). The Influence of the Knock-out Additive on the Mechanical Properties of Cores Made in the Core Blowing Process. Journal of Casting & Materials Engineering, 9(4), 66-71. https://doi.org/10.7494/jcme.2026.10.S1.%p