Design of a Solidification Rate Measurement Experiment for Cast Steel in Molds Made of Different Sands Using Computer Simulation
DOI:
https://doi.org/10.7494/jcme.2025.9.3.39Keywords:
cooling rate, molding materials, GX70CrMnSiNiMo2 tool steel, numerical simulationAbstract
This article presents the design process of the casting technology for a step-shaped casting made of steel using simulation tools. A series of proposals for gating and feeding systems were simulated in the MAGMASoft® software. Results of numerical simulations allowed the Authors to select the casting technology which allows defect-free casting to be obtained. A numerical analysis of the cooling rate of a step-shaped casting made of GX70CrMnSiNiMo2 tool steel with a 5% Ti addition was carried out for the selected manufacturing technology. Due to the nature of the material used and the extended presence of martensite during cooling, in-mold hardening of the casting may occur. The simulations showed that the type of molding material affects the cooling rate, which is confirmed by the analysis of cooling curves and the morphology of shrinkage porosity. The analysis of solidification rates provides a valuable starting point and basis for subsequent research stages, taking into account the actual properties of the molding sands and the phase transformations occurring in the selected steel type. The casting technology design, which ensures the production of sound casting, was developed as part of this study. A series of simulations using different molding materials confirms the significant impact that the choice of mold material has on the casting solidification and cooling process.
Downloads
References
[1] Muhammed M., Javidani M., Heidari M. & Jahazi M. (2023). Enhancing the tribological performance of tool steels for wood-processing applications: A comprehensive review. Metals, 13(8), 1460. DOI: https://doi.org/10.3390/met13081460.
[2] Tęcza G. & Sobula S. (2014). Effect of heat treatment on change microstructure of cast high-manganese hadfield steel with elevated chromium content. Archives of Foundry Engineering, 14(3), 67–70.
[3] Kalandyk B., Tęcza G., Zapała R. & Sobula S. (2015). Cast high-manganese steel – the effect of microstructure on abrasive wear behaviour in Miller test. Archives of Foundry Engineering, 15(2), 35–38. DOI: https://doi.org/10.1515/afe-2015-0033.
[4] Tęcza G. & Głownia J. (2015). Resistance to abrasive wear and volume fraction of carbides in cast high-manganese austenitic steel with composite structure. Archives of Foundry Engineering, 15(4), 129–133. DOI: https://doi.org/10.1515/afe-2015-0092.
[5] Tęcza G. & Garbacz-Klempka A. (2016). Microstructure of cast high-manganese steel containing titanium. Archives of Foundry Engineering, 16(4), 163–168. DOI: https://doi.org/10.1515/afe-2016-0103.
[6] Tęcza G. & Zapała R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering, 18(1), 119–122. DOI: https://doi.org/10.24425/118823.
[7] Tęcza G. (2021). Changes in abrasive wear resistance during Miller test of high-manganese cast steel with niobium carbides formed in the alloy matrix. Applied Sciences, 11(11), 4794. DOI: https://doi.org/10.3390/app11114794.
[8] Tęcza G. (2022). Changes in microstructure and abrasion resistance during miller test of hadfield high-manganese cast steel after the formation of vanadium carbides in alloy matrix. Materials, 15(3), 1021. DOI: https://doi.org/10.3390/ma15031021.
[9] Tęcza G. (2023). Changes in abrasion resistance of cast Cr-Ni steel as a result of the formation of niobium carbides in alloy matrix. Materials, 16(4), 1726. DOI: https://doi.org/10.3390/ ma16041726.
[10] Tęcza G. (2023). Changes in the microstructure and abrasion resistance of tool cast steel after the formation of titanium carbides in the alloy matrix. Archives of Foundry Engineering, 23(4), 173–180. DOI: https://doi.org/10.24425/ afe.2023.148961.
[11] Wang Y., Lei T. & Liu J. (1999). Tribo-metallographic behavior of high carbon steels in dry sliding: I. Wear mechanisms and their transition. Wear, 231(1), 1–11. DOI: https://doi.org/10.1016/S0043-1648(99)00115-5.
[12] Fraś E. (2003). Krystalizacja metali. Warszawa: WNT.
[13] Stefański Z., Warmuzek M. & Boroń Ł. (2010). Opracowanie technologii produkcji „bentonitu zmodyfikowanego" przeznaczonego do wykonywania odlewów staliwnych ze szczególnym uwzględnieniem jakości ich warstwy powierzchniowej. Prace Instytutu Odlewnictwa, 50(2), 15–36.
[14] Holtzer M., Dańko R. & Górny M. (2016). Influence of furfuryl molding sand on flake graphite formation in surface layer of ductile iron castings. International Journal of Cast Metals Research, 29(1–2), 17–25, DOI: https://doi.org/10.1179/1743133615Y.0000000036.
[15] Kamińska J., Puzio S., Angrecki M. & Stachowicz M. (2020). The effect of the addition of bentonite clay to traditional sand mixtures on the surface quality of iron castings. Journal of Ecological Engineering, 21(1), 160–167. DOI: https://doi.org/10.12911/22998993/112505.
[16] Anton I.V., Militaru C., Ştefan E.M., Ivan N., Chişamera M. & Ripoşan I. (2009). Wall thickness-solidification features correlation of ductile iron castings under mold type influence. Scientific Bulletin Series B: Chemistry and Materials Science University Politehnica of Bucharest, 71(4), 115–130.
[17] Taler J. & Duda P. (2016). Rozwiązywania prostych i odwrotnych zagadnień przewodzenia ciepła. Warszawa: WNT.
[18] Homa M., Sornek K., Goryl W., Papis-Frączek K., Żak P., Dańko R. (2025). Numerical analysis of the prototype of the high-temperature thermal energy storage based on sand bed. Energy, 333, 137472. DOI: https://doi.org/10.1016/j.energy.2025.137472.
[19] Łągiewka M., Konopka Z., Zyska A., Nadolski M. (2013). Determination of heat accumulation coefficient for oil bonded molding sands. Archives of Foundry Engineering, 13(2), 91–94, DOI: https://doi.org/10.2478/afe-2013-0043.
[20] Lewandowski L. (1997). Tworzywa na formy odlewnicze. Kraków: Akapit.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Paweł Żak, MSc. Eng. Natalia Mordyl, Prof. Jarosław Jakubski

This work is licensed under a Creative Commons Attribution 4.0 International License.