GRADIENT DAMAGE WITH VOLUMETRIC-DEVIATORIC DECOMPOSITION AND ONE STRAIN MEASURE
Keywords:
isotropic damage, gradient enhancement, finite element methodAbstract
The paper presents a two-field formulation of the gradient-enhanced damage model and its application. This isotropic model is characterized by two damage parameters with a volumetric-deviatoric decomposition. However, one strain measure governs the development of damage as for the scalar description. The theory is verified by means of one-element benchmarks and also a more sophisticated simulation, namely the splitting of concrete cylinder in the Brazilian test is discussed.Downloads
References
Askes H., Pamin J., de Borst R. 2000, Dispersion analysis and element-free Galerkin solutions of second- and fourth-order gradient-enhanced damage models. Int. J. Numer. Meth. Engng, 49, pp. 811-832.
Betten J. 1983, Damage tensors in continuum mechanics. J. Méc. Théor. Appl., 2(1), pp. 13-32.
Carol I., Rizzi E., Willam K. 2002, An 'extended' volumetric/deviatoric formulation of anisotropic damage based on a pseudo-log rate. Eur. J. Mech. A/Solids, 21(5), pp. 747-772.
Chaboche J.-L. 1981, Continuous damage mechanics: a tool to describe phenomena before crack initiation. Nuclear Engng. and Design, 64(2), pp. 233-247.
Chen W.F., Chang T.Y.P. 1978, Plasticity solutions for concrete splitting tests. ASCE J. Eng. Mech. Div., 104(EM3), pp. 691-704.
Comi C. 2001, A non-local model with tension and compression damage mechanisms. Eur. J. Mech. A/Solids, 20(1), pp. 1-22.
Comi C., Perego U. 2001, Numerical aspects of nonlocal damage analyses. Revue européenne des éléments finis, 10(2-3-4), pp. 227-242.
de Vree J.H.P., Brekelmans W.A.M., van Gils M.A.J. 1995, Comparison of nonlocal approaches in continuum damage mechanics. Comput. & Struct., 55(4), pp. 581-588.
Feenstra P.H. 1993, Computational aspects of biaxial stress in plain and reinforced concrete. Ph.D. dissertation, Delft University of Technology, Delft.
Ganczarski A., Barwacz L. 2004, Notes on damage effect tensors of two-scalar variables. Int. J. Damage Mechanics, 13, pp. 287-295.
Geers M.G.D. 1997, Experimental analysis and computational modelling of damage and fracture. Ph.D. dissertation, Eindhoven University of Technology, Eindhoven.
Ju J.W. 1989, On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int. J. Solids Struct., 25(7), pp. 803-833.
Ju J.W. 1990, Isotropic and anisotropic damage variables in continuum damage mechanics. ASCE J. Eng. Mech., 116(12), pp. 27642770.
Kachanov L.M. 1958, Time of rupture process under creep conditions. Izd. Akad. Nauk SSSR, Otd. Tekh. Nauk, 8, pp. 26-31 (in Russian).
Krajcinovic D. 1989, Damage mechnics. Mechanics of Materials, 8(2-3), pp. 117-197.
Krajcinovic D., Fonseka G.U. 1981, Continuous damage theory of brittle materials. ASME J. Appl. Mech., 48(4), pp. 809-824.
Lemaitre J., Chaboche J.-L. 1990, Mechanics of Solid Materials. Cambridge University Press, Cambridge.
Litewka A. 1985, Effective material constants for ortotropically damaged elastic solid. Arch. Mech., 37(6), pp. 631-642.
Lubliner J., Oliver J., Oller S., Onate E. 1989, A plastic-damage model for concrete. Int. J. Solids Struct., 25(3), pp. 299-326.
Mazars J. 1984, Application de la mécanique de l'edommagement au comportement non linéaire et à la rupture du béton de structure. Ph.D. dissertation, Université Paris 6, Paris.
Mazars J., Pijaudier-Cabot G. 1989, Continuum damage theory - application to concrete. ASCE J. Eng. Mech., 115, pp. 345-365.
Meschke G., Macht J., Lackner R. 1998, A damage-plasticity model for concrete accounting for fracture-induced anisotropy. [in:] de Borst R. et al., editors, Proc. EURO-C 1998 Int. Conf. Computational Modelling of Concrete Structures, vol. 1, pp. 3-12, Rotterdam/ Brookfield. A.A. Balkema.
Murakami S., Ohno N. 1981, A contiuum theory of creep and creep damage. [in:] Ponter A.R.S. and Hayhurst D.R., editors, IUTAM Symp., Creep in Structures, pp. 422-444, Berlin, Springer.
Pamin J. 2004, Gradient-enhanced continuum models: formulation, discretization and applications. Series Civil Engineering, Monograph 301, Cracow University of Technology, Cracow.
Peerlings R.H.J., de Borst R., Brekelmans W.A.M., de Vree J.H.P. 1996, Gradient-enhanced damage for quasi-brittle materials. Int. J. Numer. Meth. Engng, 39, pp. 3391-3403.
Peerlings R.H.J., de Borst R., Brekelmans W.A.M., Geers M.G.D. 1998, Gradient-enhanced damage modelling of concrete fracture. Mech. Cohes.-frict. Mater., 3, pp. 323-342.
Pivonka P., Ozbolt J., Lackner R., Mang H.A. 2004, Comparative studies of 3d-constitutive models for concrete: application to mixed-mode fracture. Int. J. Numer. Meth. Engng, 60, pp. 549-570.
Skrzypek J., Ganczarski A. 1999, Modelling of Material Damage and Failure of Structures: Theory and Applications. Springer, Berlin, New York.
Willam K., Pramono E., Sture S. 1987, Fundamental issues of smeared crack models. [in:] Shah S.P. and Swartz S.E. (editors), Proc. SEM-RILEM Int. Conf. on Fracture of Concrete and Rock, pp. 192-207, Bethel, Connecticut. Society of Engineering Mechanics.
Winnicki A., Cichon Cz. 1996, Numerical analysis of the plain concrete model prediction for nonproportional loading paths. [in:] Topping,B.H.V., editor, Advances in Finite Element Technology, pp. 331— 339, Edinburgh, Civil-Comp Press.
Winnicki A., Pearce C.J., Bicanic N. 2001, Viscoplastic Hoffman consistency model for concrete. Comput. & Struct., 79, pp. 7-19.
Wosatko A. 2008, Finite-element analysis of cracking in concrete using gradient damage-plasticity. Ph.D. dissertation, Cracow University of Technology, Cracow.
Wu J.-Y., Li J. 2008, On the mathematical and thermodynamical descriptions of strain equivalence based anisotropic damage model. Mechanics of Materials, 40, pp. 377-400.
Downloads
Published
Issue
Section
License
Remember to download, sign, scan and attach the copyright notice
This file should be uploaded as a Supplementary file (Step 4) of the submission procedure.