Interaction of N with White-solidified Cast Iron Model Alloys: The Effect of Mn and Cu on the Formation of Fe and Si Nitrides

Authors

  • Stefan Kante TU Bergakademie Freiberg, Institute of Materials Science, Gustav-Zeuner-Str. 5, 09599 Freiberg, Germany
  • Andreas Leineweber TU Bergakademie Freiberg, Institute of Materials Science, Gustav-Zeuner-Str. 5, 09599 Freiberg, Germany

DOI:

https://doi.org/10.7494/jcme.2021.5.4.66

Abstract

Surface remelting and subsequent nitriding improves the surface properties of cast irons. Upon remelting, a white-solidified surface layer forms, which contains coarse Si-free eutectic cementite (θ) and Si-enriched ferrite, pearlite or martensite in the intercarbidic regions between the eutectic θ. Nitriding produces a compound layer at the surface, which is composed of ε and γ’-iron (carbo)nitrides and enhances the corrosion resistance. Nitriding of white-solidified Fe-C-Si alloys, being model materials for remelted low-alloy ferritic cast irons, has shown that Si dissolved in α-Fe notably affects the formation of ε and γ’ in intercarbidic regions while Si simultaneously precipitates as amorphous nitride, X. Under process conditions only allowing for the formation of γ’ in pure Fe, Si dissolved in α-Fe promotes the formation of ε over the formation γ’, whereas Si-free eutectic θ transforms into nitride following the sequence θ → ε → γ’. The present work studies the nitriding of white-solidified Fe-3.5wt.%C-3wt.%-M alloys with additions of M = 1 wt.% Mn, 1 wt.% Cu or 1 wt.% Mn + 1 wt.% Cu, serving as model materials for remelted pearlitic cast irons. The presence of Mn and/or Cu causes notable deviations from the nitriding behavior known from Fe-C-Si alloys. Mn accelerates the precipitation of X in intercarbidic regions and obstructs the transformation of ε formed from Si-free θ into γ’. Cu promotes the formation of γ’ in Si-rich intercarbidic regions, surpassing the ε-promoting effect of Si.

Downloads

Download data is not yet available.

References

Mittemeijer E.J. & Somers M.A.J. (2014). Thermochemical surface engineering of steels: Improving materials performance. Elsevier.

Baranowska J. (1998). Surface quality of grey cast irons in the context of nitriding and oxygen-sulphur-nitriding. Surface and Coatings Technology, 100–101, 271–275. Doi: https://doi.org/10.1016/S0257-8972(97)00631-2.

Buchwalder A., Zenker R., Rüthrich K., Griesbach, W., Nagel K., Hartwig S. & Siedler J. (2014). Eine neue kombinierte Randschichttechnologie für hochbeanspruchte Gusseisenwerkstoffe. HTM, 69(3), 138–147. Doi: https://doi.org/10.3139/105.110219.

Holst A., Buchwalder A. & Zenker R. (2020). Influence of gas nitriding conditions on layer structure formation on grey- and white-solidified cast irons. La Metallurgia Italiana, 112(1), 61–72.

Kante S., Kürnsteiner, P., Gault B., Motylenko M. & Leineweber A. (2021). Eutectoid growth of nanoscale amorphous Fe-Si nitride upon nitriding. Acta Materialia, 209, 116774. Doi: https://doi.org/10.1016/j.actamat.2021.116774.

Kante S. & Leineweber A. (2008). Nitriding of Fe-C and Fe-C-Si White Cast Iron In: H. Klümper-Westkamp, K.M. Winter (Eds.), Proceedings of the ECHT 2018, Carl Hanser Verlag, München, pp. 5–14.

Kante S. & Leineweber A. (2019). Two-phase and three-phase crystallographic relationships in white-solidified and nitrided Fe-C-Si cast iron. Acta Materialia, 170, 240–252. Doi: https://doi.org/10.1016/j.actamat.2019.03.029.

Kante S., Motylenko M. & Leineweber A. (2021). Nitriding of White-Solidified Fe-C-Si Alloys: Diffusion Path Concept Applied to Inhomogeneous Microstructures. Advanced Engineering Materials, 100833. Doi: https://doi.org/10.1002/adem.202100833.

Kante S. & Leineweber A. (2020). The iron silicocarbide in cast irons revisited. Journal of Alloys and Compounds, 815, 152468. Doi: https://doi.org/10.1016/j.jallcom.2019.152468.

Spinat P., Brouty C., Whuler A. & Herpin P. (1975). Etude structurale de la phase ’Mn8Si2C’. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 31, 541–547. Doi: https://doi.org/10.1107/S0567740875003196.

Steiner T. & Mittemeijer E.J. (2016). Alloying Element Nitride Development in Ferritic Fe-Based Materials Upon Nitriding: A Review. Journal of Materials Engineering and Performance, 25, 2091–2102. Doi: https://doi.org/10.1007/s11665-016-2048-x.

Mittemeijer E.J., Biglari M.H., Böttger A.J., Van der Pers N.M., Sloof W.G. & Tichelaar F.D. (1999). Amorphous precipitates in a crystalline matrix: Precipitation of amorphous Si3N4 in α-Fe. Scripta Materialia, 41(6), 625–630. Doi: https://doi.org/10.1016/S1359-6462(99)00143-8.

Van Landeghem H.P., Gouné M., Bordère S., Danoix F. & Redjaïmia A. (2015). Competitive precipitation of amorphous and crystalline silicon nitride in ferrite: interaction between structure, morphology, and stress relaxation. Acta Materialia, 93, 218–234. Doi: https://doi.org/10.1016/j.actamat.2015.04.032.

Meka S.R., Jung K.S., Bischoff E. & Mittemeijer E.J. (2012). Unusual Precipitation of Amorphous Silicon Nitride Upon Nitriding Fe-2at.%Si Alloy. Philosophical Magazine, 92 (11), 1435–1455. Doi: https://doi.org/10.1080/14786435.2011.648226.

Meka S.R. & Mittemeijer E.J. (2013). Abnormal Nitride Morphologies upon Nitriding Iron-Based Substrates. JOM, 65, 769–775. Doi: https://doi.org/10.1007/s11837-013-0603-6.

Coelho A.A. (2003). Indexing of powder diffraction patterns by iterative use of singular value decomposition. Journal of Applied Crystallography, 36, 86–95. Doi: https://doi.org/10.1107/S0021889802019878.

Bachmann F., Hielscher R. & Schaeben H. (2011). Grain detection from 2d and 3d EBSD data – Specification of the MTEX algorithm. Ultramicroscopy, 111(12), 1720–1733. Doi: https://doi.org/10.1016/j.ultramic.2011.08.002.

Wriedt H.A., Gokcen N.A. & Nafziger R.H. (1987). The Fe-N (Iron-Nitrogen) system. Bulletin of Alloy Phase Diagrams, 8, 355–377. Doi: https://doi.org/10.1007/BF02869273.

Leineweber A., Shang S.L. & Liu Z.K. (2015). C-vacancy concentration in cementite, Fe3C1-z, in equilibrium with α-Fe[C] and γ-Fe[C]. Acta Materialia, 86, 374–384. Doi: https://doi.org/10.1016/j.actamat.2014.11.046.

Jonsson-Holmqvist B., Grieveson P. & Jack K.H. (1973). The nitride hardening of ferritic iron-manganese and iron-manganese-silicon alloys. Scandinavian Journal of Metallurgy, 2(1), 35–38.

Takahashi J., Kawakami K. & Kawasaki K. (2019). Study on complex precipitation kinetics in Cr- and Cu-added nitriding steels by atom probe tomography. Acta Materialia, 169, 88–98. Doi: https://doi.org/10.1016/j.actamat.2019.03.002.

Schwarz B., Rossi P.J., Straßberger L., Jörg F., Meka S.R., Bischoff E., Schacherl R.E. & Mittemeijer E.J. (2014). Coherency strain and precipitation kinetics: crystalline and amorphous nitride formation in ternary Fe-Ti/Cr/V-Si alloys. Philosophical Magazine, 94, 3098–3119. Doi: https://doi.org/10.1080/14786435.2014.952258.

Roberts W., Grieveson P. & Jack K.H. (1972). Precipitation of Silicon Nitrides and Manganese-silicon Nitrides in Steel. The Journal of the Iron and Steel Institute, 210, 931–937.

Klemm-Toole J., Burnett M., Clarke A.J., Speer J.G. & Findley K.O. (2021). Influences of Vanadium and Silicon on Case Hardness and Residual Stress of Nitrided Medium Carbon Steels. Metallurgical and Materials Transactions A, 52, 462–482. Doi: https://doi.org/10.1007/s11661-020-06063-x.

Downloads

Published

2021-10-22

Issue

Section

Articles

How to Cite

Interaction of N with White-solidified Cast Iron Model Alloys: The Effect of Mn and Cu on the Formation of Fe and Si Nitrides. (2021). Journal of Casting & Materials Engineering, 5(4), 66-70. https://doi.org/10.7494/jcme.2021.5.4.66