Strength, Water Absorption, Thermal and Antimicrobial Properties of a Biopolymer Composite Wound Dressing

Authors

  • Chiosa Odili University of Lagos, Faculty of Engineering, Department of Metallurgical & Materials Engineering, Akoka, Lagos, Nigeria
  • Israel Olatunde Sekunowo University of Lagos, Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Idi–Araba, Lagos, Nigeria
  • Margaret Okonawan Ilomuanya University of Lagos, Faculty of Engineering, Department of Metallurgical & Materials Engineering, Akoka, Lagos, Nigeria
  • Oluwashina Philips Gbenebor University of Lagos, Faculty of Engineering, Department of Metallurgical & Materials Engineering, Akoka, Lagos, Nigeria
  • Samson Oluropo Adeosun University of Lagos, Faculty of Engineering, Department of Metallurgical & Materials Engineering, Akoka, Lagos, Nigeria/Durban University of Technology, Durban South Africa, Industrial Engineering Department

DOI:

https://doi.org/10.7494/jcme.2022.6.1.22

Abstract

Conventional wound material allows bacterial invasions, trauma and discomfort associated with the changing of the dressing material, and the accumulation of body fluid for wounds with high exudate. However, there is a shift from conventional wound dressing materials to polymeric nanofibers due to their high surface area to volume ratio, high porosity, good pore size distribution, which allows for cell adhesion and proliferation. There is an urgent need to synthesis a biodegradable composite that is resistant to bacterial infection. In this study, an electrospun polylactide (PLA) composite suitable for wound dressing, with enhanced antimicrobial and mechanical properties, was produced. The neat PLA, PLA/CH (10 wt.%), PLA/CH (5 wt.%), PLA/CHS (10 wt.%), PLA/CHS (5 wt.%), PLA/CH (2.5 wt.%) /CHS (2.5 wt.%) and PLA/CH (5 wt.%)/CHS (5 wt.%), were electrospun using 0.14 g/ml solution. Results show that crystallinity (67.6%) of neat PLA declined by 3.8% on the addition of 2.5 wt.% chitin/chitosan with improved hydrophilicity of the composite. The tensile strength of neat PLA (0.3 MPa) increased (0.6 MPa) with 2.5 wt.% chitin/chitosan addition. The slight increase in the glass transition temperature from 75°C for neat PLA to 78°C of the composite fibre, showed improved ductility. The fibres showed little beads, hence suitable for wound dressing. The electrospun mats have good water absorption capacity and strong resistance against Staphylococcus aureus. Good performance was attained at 5 wt.% of chitin, chitosan and hybrid reinforcements. Therefore, a PLA/chitin/chitosan composite is recommended as a wound dressing material.

Downloads

Download data is not yet available.

References

Boateng J.S., Matthews K.H., Stevens H.N.E. & Eccleston G.M. (2008). Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences, 97(8), 2892–2923. Doi: https://doi.org/10.1002/jps.21210.

Chandan K.S. (2019). Human wounds and its Burden: An updated Compendium of Estimates. Advances in Wound Care, 8(2), 39–49. Doi: https://doi.org/10.1089/wound.2019.0946.

Willi P. & Chandra P.S. (2004). Chitosan and Alginate Wound Dressings: A Short Review. Trends Biomaterial Artificial Organs, 18(1), 18–23.

Ilenghoven D., Chan C.Y., Wsr W.A.K., Mohdyussof S.J. & Ibrahim S. (2017). A Review of Wound Dressing Practices. Clinical Dermatology Open Access Journal, 2(6), 000133. Doi: https://doi.org/10.23880/CDOAJ-16000133.

Uzun M. (2018). A review of Wound Management Materials. Journal of Textile Engineering and Fashion Technology, 1(4), 53–59. Doi: https://doi.org/10.15406/jteft.2018.04.00121.

Zahedi P., Rezaeian I., Ranaei-Siadat S.-O., Jafari S.-H. & Supaphol P. (2009). A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bondages. Polymer Advance Technology, 21, 77–95. Doi: https://doi.org/10.1002/pat.1625.

Rahman G.A., Adigun I.A., Yusuf I.F. & Ofoegbu C.K.P. (2006). Wound dressing where there is a limitation of choice. Nigerian Journal of Surgical Research, 8(3–4), 151–154. Doi: https://doi.org/10.4314/njsr.v8i3-4.54882.

Adomavičiūtė E., Pupkevičiūtė S., Juškaitė V., Žilius M., Stanys S., Pavilonis A. & Briedis V. (2017). Formation and Investigation of Electrospun PLA Materials with Propolis Extracts and Silver Nanoparticles for Biomedical Applications. Journal of Nano-materials, 1–11, 8612819. Doi: https://doi.org/10.1155/2017/8612819.

Akpan E.I., Gbenebor O.P., Igogori E.A., Aworinde A.K. Adeosun S.O. & Olaleye S.A. (2019). Electrospun porous bio-fibre base on polylactide/natural fibre particles. Arab Journal of Basic and Applied Sciences, 26(1), 225–235. Doi: https://doi.org/10.1080/25765299.2019.1607995.

Hidalago I.A., Sojo F., Arvelo F. & Sabino M.A. (2013). Functional electrospun poly(latic acid) scaffolds for biomedical applications: experimental conditions, degradation and biocompatibility study. Molecular and cellular Biomechanics, 10(2), 85–105. Doi: https://doi.org/10.3970/mcb.2013.010.085.

Anderson J.M. & Shive M.S. (1997). Biodegradation and biocompatibility of PLA and PLG microspheres. Advanced Drug Delivery Reviews, 28(1), 5–24. Doi: https://doi.org/10.1016/s0169-409x(97)00048-3.

Gu X., Li Y., Cao R., Liu S., Fu C., Feng, S. Yang C., Cheng W. & Wang Y. (2019). Novel electrospun Poly(latic acid)/Polybutylene/Graphene oxide nanofiber membranes for antibacterial applications advances. AIP Advances, 9(6), 065306. Doi: https://doi.org/10.1063/1.5100109.

Eltom A., Zhong G. & Muhammad A. (2019). Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Advances in Materials Science and Engineering, 3429527. Doi: https://doi.org/10.1155/2019/3429527.

Thamarai S.V., Gobinath R., Thirumurugan K. & Mekala N. (2019). Development of Electrospun Wound Dressing for Hemorrhage Control using Biominerals. International Journal of Recent Technology and Engineering, 8(2S3), 880–882. Doi: https://doi.org/10.35940/ijrte.B1165.0782S319.

Naseri N., Algan C., Jacobs V., John M. Oksman K. & Mathew A.P. (2014). Electrospun chitosan-based nanocomposites mats reinforced with chitin nanocrystals for wound dressing. Carbohydrate Polymers, 109, 7–15. Doi: https://doi.org/10.1016/j.carbpol.2014.03.031.

Juárez-de la Rosa B.A., Quintana P., Ardisson P.I., Yáñez-Limón J.M., Alvarado-Gil J.J. (2012). Effects of thermal treatments on structure of two black coral species chitinous exoskeleton. Journal of Material Science, 47, 990–998. Doi: http://dx.doi.org/10.1007%2Fs10853-011-5878-9.

Liu C., Wong H.M., Yeung K.W.K & Tjong S.C. (2016). Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility. Polymers, 8(8), 287. Doi: https://doi.org/10.3390/polym8080287.

Harkins A.L., Duri S., Kloth L.C. & Tran C.D. (2013). Chitosan-cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability and biocompatibility. Journal of Biomedical Material Research. Part B, 102(6), 1199–1206. Doi: https://doi.org/10.1002/jbm.b.33103.

Dubey R.C. & Maheshwari D.K. (2012). Practical microbiology. 2nd Edition. S. Chand and Company private ltd, (Ed.), New Delhi.

Boland E.D., Pawlowski K.J., Barnes C.P., Simpson D.G., Wnek G.E. & Bowlin G.L. (2006). Electrospinning of bioresorbable polymers for tissue engineering scaffolds. American Chemical Society Symposium Series, 918, 188–204. Doi: http://dx.doi.org/10.1021/bk-2006-0918.ch014.

Dong Y., Marshall J., Haroosh H.J., Mohammadzadehmoghadam S., Liu D., Qi X. & Lau K.-T. (2015). Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: Influence of HNTcontent and modification. Composites Part A: Applied Science and Manufacturing, 76, 28–36. Doi: https://doi.org/10.1016/j.compositesa.2015.05.011.

Oliveira J.E., Mattoso L.H.C., Orts W.J. & Medeiros E.S. (2013). Structural and Morphological Characterization of Micro and Nanofibers Produced by Electrospinning and Solution Blow Spinning: A comparative study. Advances in Materials Science and Engineering. 409572. Doi: https://doi.org/10.1155/2013/409572.

Marsi T.C.O., Ricci R., Toniato T.V., Vasconcellos L.M.R., Vaz Elias M.V., Silva A.D.R., Furtado A.S.A., Magalhães L.S.S.M., Silva-Filho E.C., Marciano F.R., Zille A., Webster T.J. & Lobo A.O. (2019). Electrospun Nanofibrous Poly (Lactic Acid)/Titanium Dioxide Nanocomposite Membranes for Cutaneous Scar Minimization. Frontiers in Bioengineering and Biotechnology. Doi: https://doi.org/10.3389/fbioe.2019.00421.

Lu Y., Chen Y.-C. & Zhang P.-H. (2016). Preparation and characterization of Polylactic Acid (PLA)/Polycaprolactone (PCL) Composite Microfiber Membranes. Fibres and Textiles in Eastern Europe. 3(117), 17–25. Doi: https://doi.org/10.5604/12303-666.1196607.

Qi G. (2013). Fabrication and characterization of PLA, PHBV and Chitin Nanowisker Blends, Composites and foams for High structural Applications. University of Toronto [unpublished Master Thesis].

Kancheva M., Toncheva A., Manolova N. & Rashkov I. (2015). Enhancing the mechanical properties of electrospun polyester mats by heat treatment. Express Polymer Letters, 9(1), 49–65. Doi: https://doi.org/10.3144/expresspolymlett.2015.6.

Ahyat N.M., Mohamad F., Ahmad A.S. & Azmi A.A. (2017). Chitin and Chitosan Extraction from Portunus Pelagicus. Malaysian Journal of Analytical Sciences, 21(4), 770–777. Doi: https://doi.org/10.17576/mjas-2017-2104-02.

Gbenebor O.P., Adeosun S.O., Lawal G.I., Jun S. & Olaleye S.A. (2017). Acetylation, crystalline and morphological properties of structural polysaccharide from shrimp exoskeleton. Engineering Science and Technology, an International Journal, 20(3), 1155–1165. Doi: https://doi.org/10.1016/j.jestch.2017.05.002.

Gonçalves R.P., Ferreira W.H., Gouvêa R.F., & Andrade C.T. (2017). Effect of chitosan on the properties of electropunk fibers from mixed poly(Vinyl Alcohol)/chitosan solution. Materials Research, 20(40), 984–993. Doi: https://doi.org/10.1590/1980-5373-MR-2016-0618.

Pawlak A. & Mucha M. (2003). Termogravimetric and FTIR studies of chitosan blends. Termochimica Acta. 396(1–2), 153–166. Doi: https://doi.org/10.1016/s0040-6031(02)00523-3.

Tawakkal M.A. (2016). Characterization and antimicrobial activity of poly (lactic acid)/kenaf bio-composites containing a natural agent. Vectorial University Melbourne, Australia [unpublished Doctoral Thesis].

Huda M.S., Drzal L.T., Misra M. & Mohanty A.K. (2006). Wood-fiber-reinforced poly (lactic acid) composites: Evaluation of the physiochemical and morphological properties. Journal of Applied Polymer Science, 102(5), 4856–4869. Doi: https://doi.org/10.1002/app.24829.

Abdelaal O.A., & Darwish S. M. (2013). Review of Rapid Prototyping Techniques for Tissue Engineering Scaffolds Fabrication. In: Öchsner A., da Silva L.F.M. & Altenbach H., Characterization and Development of Biosystems and Biomaterials, Springer-Verlag, Berlin – Heidelberg, 33–54.

Meneghello G., Parker D.J., Ainsworth B.J., Perera S.P., Chaudhuri J.B., Ellis M.J. & De Bank P.A. (2009). Fabrication and characterization of poly(lactic-co-glycolic acid)/polyvinyl alcohol blended hollow fibre membrane for tissue engineering applications. Journal of Membrane Science, 344(1–2), 55–61. Doi: http://dx.doi.org/10.1016/j.memsci.2009.07.034.

Abdal-hay A., Hussein K.H., Casettari L., Khalil K.A & Hamdy A.S. (2015). Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering application. Material Science and Engineering: C, 60, 143–150. Doi: https://doi.org/10.1016/j.msec.2015.11.024.

Thomas M.S., Pillai P.S.K., Faria M., Cordeiro N., Barud H., Thomas S. & Pothen L.A. (2018). Electrospun polylactic acid-chitosan composite. A bio-based alternative for inorganic composites for advance application. Journal of Material Science: Materials in Medicine, 29:137. Doi: https://doi.org/10.1007/s10856-018-6146-1.

Silverajah V.S, Ibrahim N.A., Yunus W.Z.W., Hassan H.A. & Woei C.B. (2012). A comparative study on the mechanical, thermal and morphological characterization of poly(lactic acid)/epoxidized palm oil blend. International Journal of Molecular Sciences, 13(5), 5878–5898. Doi: https://doi.org/10.3390/ijms13055878.

Murariu M., Dechief A.-L., Ramy-Ratiarison R., Paint Y., Raquez J.-M. & Dubois P. (2015) Recent advances in production of poly (lactic acid) (PLA) nanocomposites: a versatile method to tune crystallization properties of PLA. Nanocomposites, 1(2), 71–82. Doi: https://doi.org/10.1179/2055033214Y.0000000008.

Hossain K.M.Z., Felfel R.M., Rudd C.D., Thielemans W. & Ahmed I. (2014). The effect of cellulose nanowhiskers on the flexural properties of self-reinforced polylactic acid composites. Reactive & Functional Polymer, 85, 193–200.

Chen H.-C., Tsai C.-H. & Yang M.-C. (2011). Mechanical properties and biocompatibility of electrospun polylactide/poly(vinylidene fluoride) material. Journal of Polymer Research, 18(3), 319–327. Doi: https://doi.org/10.1007/s10965-010-9421-5.

Zhao N., Shi S., Lu G. & Wei M. (2007). Polylactide (PLA)/layered double hydroxides composite fibers by electrospinning method. Journal of Physics and Chemistry of Solids, 69(5–6), 1564–1568. Doi: https://doi.org/10.1016/j.jpcs.2007.10.046.

Amajuoyi J.N., Ilomuanya M.O., Asantewaa-Osei Y., Azubuike C.P., Adeosun S.O. & Igwilo C.I. (2020). Development of electrospun Keratin/coenzyme Q10/poly vinyl alcohol nano fibrous scaffold containing mupirocin dressing for infected wounds. Future Journal of Pharmaceutical Sciences, 6(25). Doi: https://doi.org/10.1186/s43094-020-00043-z.

Ilomuanya M.O., Okafor P.S., Amajuoyi J.N., Onyejekwe J.C., Okubanjo O.O., Adeosun S.O. & Silva B.O. (2020). Polylactic acid-based electrospun fiber and Hyaluronic acid-valsartan hydrogel scaffold for chronic wound healing. Beni-Suef University Journal of Basic and Applied Sciences, 9(31). Doi: https://doi.org/10.1186/s43088-020-00057-9.

Downloads

Published

2022-03-08

Issue

Section

Articles

How to Cite

Strength, Water Absorption, Thermal and Antimicrobial Properties of a Biopolymer Composite Wound Dressing. (2022). Journal of Casting & Materials Engineering, 6(1), 22-32. https://doi.org/10.7494/jcme.2022.6.1.22

Most read articles by the same author(s)