Reverse Engineering and Computer Modelling in Archaeometallurgy for the Reconstruction of Heritage Objects Using Precision Casting and 3D Printing

Authors

DOI:

https://doi.org/10.7494/jcme.2025.9.4.%25p

Keywords:

casting, additive manufacturing, 3D scan, computer modelling, numerical simulations, copper alloys, bronze, investment casting, cultural heritage, archaeometallurgy, reconstruction, selective laser metling

Abstract

This article presents an interdisciplinary approach to the reconstruction of a copper-alloy artefact using reverse engineering techniques combined with modern digital and manufacturing technologies. The research was motivated by the need to better understand historical casting techniques while preserving the integrity of cultural heritage objects through non-destructive methods. The study integrates 3D scanning, CAD-based modelling, numerical simulations, investment casting, and metal additive manufacturing. The geometry of the artefact was captured using high-resolution 3D scanning, enabling the development of two CAD models: one representing the preserved state of the object and a second reconstructed model with the missing fragment digitally restored. Both models were used for numerical simulations of mould filling, solidification, cooling, and porosity formation performed in MAGMASOFT® 6.1, allowing the assessment of technological feasibility and defect formation. Based on the simulation results, physical replicas were produced using investment casting and selective laser melting.
The obtained numerical and experimental results were compared in terms of geometry reproduction, surface characteristics, and predicted versus observed casting behaviour. The study demonstrates that the combination of digital reconstruction, simulation tools, and experimental manufacturing provides a reliable framework for analysing historical metallurgical processes. The proposed methodology supports both scientific interpretation and the practical reconstruction of heritage objects and can be applied to a wide range of archaeometallurgical studies.

Downloads

Download data is not yet available.

References

[1] Garbacz-Klempka A., Rosołowski S., Gackowski J., Wardas-Lasoń M., Dąbrowski H. P., Fijołek A., Piękoś M., Kozana J., Tabaszewski W., Jurecki P., Wałach D., Kaczmarczyk G. & Marlicka K. (2024). Wytwórczość brązownicza w grodzie kultury łużyckiej w Biskupinie w świetle wyników badań archeometalurgicznych. In: 90. rocznica rozpoczęcia badań wykopaliskowych w Biskupinie: jubileuszowa Konferencja Naukowa: 7–8 listopada 2024. Biskupin: Muzeum Archeologiczne.

[2] Fijołek A., Garbacz-Klempka A., Wardas-Lasoń M., Marlicka K., Piekło J., Piękoś M., Kozana J. & Wałach D. (2025). Archaeometallurgy using modern research techniques and reverse engineering. Results obtained and prospects for the future. In: ICME 25: V International Conference of Casting and Materials Engineering: Lightweight Innovations for a Better Climate: Krakow, Poland, October 27–28, 2025. Krakow: AGH University of Krakow, Faculty of Foundry Engineering.

[3] Garbacz-Klempka A., Suchy J. S., Kwak Z., Długosz P. & Stolarczyk T. (2018). Casting technology experiment and computer modeling of ornaments from Bronze Age. Archives of Metallurgy and Materials, 63(3), 1329–1337. DOI: https://doi.org/10.24425/123808.

[4] Garbacz-Klempka A., Piękoś M., Perek-Nowak M., Kozana J., Żak P., Fijołek A., Silska P. & Stróżyk M. (2022). Reconstruction of the Late Bronze Age foundry process in Greater Poland: Analyses and simulations. Case study of hoard from Przybysław. Archives of Metallurgy and Materials, 67(3), 1125–1136. DOI: https://doi.org/10.24425/amm.2022.139712.

[5] Garbacz-Klempka A., Kwak Z., Żak P. L., Szucki M., Ścibior D., Stolarczyk T. & Nowak K. (2017). Reconstruction of the casting technology in the Bronze Age on the basis of investigations and visualisation of casting moulds. Archives of Foundry Engineering, 17(3), 184–190. DOI: https://doi.org/10.1515/afe-2017-0113.

[6] Garbacz-Klempka A., Rzadkosz S., Stolarczyk T., Piękoś M. & Kozana J. (2013). Archaeological remains of the copper metallurgy in Lower Silesia. Metallurgy and Foundry Engineering, 39(2), 29–36. DOI: https://doi.org/10.7494/mafe.2013.39.2.29.

[7] Liu B., Zhang F., Sun X. & Rushworth A. (2023). Additive manufacturing in cultural heritage preservation and product design. In: Pei E., Bernard A., Gu D., Klahn Ch., Monzón M., Petersen M., Sun T. (Eds.), Springer Handbook of Additive Manufacturing. Cham: Springer International Publishing, pp. 923–940.

[8] Cleary P., Ha J., Alguine V. & Nguyen T. (2002). Flow modelling in casting processes. Applied Mathematical Modelling, 26(2), 171–190. DOI: https://doi.org/10.1016/S0307-904X(01)00054-3.

[9] Prochaska M. & Mitka B. (2016). RevoScan – automatic device for 3D digitisation: Concept, application, test results. Geomatics and Environmental Engineering, 10(4), 81–87. DOI: https://doi.org/10.7494/geom.2016.10.4.81.

[10] Davey C.J. (2009). The early history of lost-wax casting. In: Mei J., Rehren T. (Eds.), Metallurgy and Civilisation: Eurasia and Beyond. London: Archetype Publications, pp. 147–154.

[11] Hunt B.L. (1980). The long history of lost wax casting: Over five thousand years of art and craftsmanship. Gold Bulletin, 13(2), 63–79. DOI: https://doi.org/10.1007/BF03215456.

[12] Kantaros A., Ganetsos T. & Petrescu F.I.T. (2023). Three-dimensional printing and 3D scanning: Emerging technologies exhibiting high potential in the field of cultural heritage. Applied Sciences, 13(8), 4777. DOI: https://doi.org/10.3390/app13084777.

[13] Bašić A., Mladineo M., Peko I. & Aljinović Meštrović A. (2018). 3D scanning, CAD optimization and 3D print application in cultural heritage: An example on statue from the ancient Salona. In: 8th International Conference “Mechanical Technologies and Structural Materials 2018”, Split, Croatia, 27–28 September 2018.

[14] Balletti C., Ballarin M. & Guerra F. (2017). 3D printing: State of the art and future perspectives. Journal of Cultural Heritage, 26, 172–182. DOI: https://doi.org/10.1016/j.culher.2017.02.010.

[15] Elias C. (2019). Whose digital heritage? Contemporary art, 3D printing and the limits of cultural property. Third Text, 33(6), 687–707. DOI: https://doi.org/10.1080/09528822.2019.1667629.

[16] Parfenov V., Igoshin S., Masaylo D., Orlov A. & Kuliashou D. (2022). Use of 3D laser scanning and additive technologies for reconstruction of damaged and destroyed cultural heritage objects. Quantum Beam Science, 6(1), 11. DOI: https://doi.org/10.3390/qubs6010011.

[17] Duda T. & Raghavan L. V. (2016). 3D metal printing technology. IFAC-PapersOnLine, 49(29), 103–110. DOI: https://doi.org/10.1016/j.ifacol.2016.11.111.

[18] Sadiq Al-Baghdadi M.A.R. (2017). 3D printing and 3D scanning of our ancient history: Preservation and protection of our cultural heritage and identity. International Journal of Energy and Environment, 8(5), 441–456.

[19] Nancharaiah T. (2020). A review paper on metal 3D printing technology. In: Patnaik A., Kozeschnik E., Kukshal V. (Eds.), Advances in Materials Processing and Manufacturing Applications. Proceedings of iCADMA 2020, Springer, pp. 251–259. DOI: https://doi.org/10.1007/978-981-16-0909-1_25.

[20] Konda Gokuldoss P., Kolla S. & Eckert J. (2017). Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting – Selection guidelines. Materials, 10(6), 672. DOI: https://doi.org/10.3390/ma10060672.

[21] Sefene E.M. (2022). State-of-the-art of selective laser melting process: A comprehensive review. Journal of Manufacturing Systems, 63, 250–274. DOI: https://doi.org/10.1016/j.jmsy.2022.04.002.

[22] Scudino S., Unterdörfer C., Prashanth K.G., Attar H., Ellendt N., Uhlenwinkel V. & Eckert J. (2015). Additive manufacturing of Cu–10Sn bronze. Materials Letters, 156, 202–204. DOI: https://doi.org/10.1016/j.matlet.2015.05.076.

[23] Padovezzi R.O., Garcia Trindade W., Marques G.A., Pereira Gomes Pinto E., Costa Silva M., Amorese R.A., Santos Damasio T. & Tedardi do Nascimento P.H. (2025). Effects of the additive manufacturing process on the mechanical and structural properties of bronze alloys: A review. Revista de Gestão e Secretariado, 16(7), 5057–5057. DOI: https://doi.org/10.7769/gesec.v16i7.5057.

[24] Rahmani R., Resende P.R., Couto R., Lopes S.I., Kumar R., Maurya H.S., Karimi J, Afonso A.M., Hussain A. & Abrantes J.C.C (2024). Structural analysis of selective laser melted copper-tin alloy. Journal of Alloys and Metallurgical Systems, 7, 100097. DOI: https://doi.org/10.1016/j.jalmes.2024.100097.

Downloads

Published

2025-12-23

Issue

Section

Articles

How to Cite

Marlicka, K., Fijołek, A., Garbacz-Klempka, A., & Piękoś, M. (2025). Reverse Engineering and Computer Modelling in Archaeometallurgy for the Reconstruction of Heritage Objects Using Precision Casting and 3D Printing. Journal of Casting & Materials Engineering, 9(4), 72-79. https://doi.org/10.7494/jcme.2025.9.4.%p