The Implementation Potential of the Hybrid Hot Metal Desulfurization Model –The Transformation of Research Results into Technological Recommendations
DOI:
https://doi.org/10.7494/jcme.2025.9.4.59-65Keywords:
hot metal, desulfurization, hybrid model, computer modelingAbstract
This study presents the development of a hybrid model for the desulfurization of hot metal using dual reagent injection of CaO and Mg, integrating thermodynamic equilibrium calculations with kinetic analysis based on Tank Theory. The objective is to provide practical technological recommendations that enable effective industrial application of the process. The model allows real-time simulation of sulfur concentration changes under varying parameters such as reagent dosage and mixing intensity, while an optimization module supports the selection of operating conditions by balancing desulfurization efficiency with material consumption and operational costs. The system adapts to changing technological conditions including feedstock composition and process temperature, ensuring flexibility in industrial practice. In addition to process control, the model incorporates economic evaluation by correlating reagent consumption with achieved technological outcomes, which enhances its practical value. The proposed solution represents a step toward intelligent desulfurization systems that combine the precision of physicochemical modeling with the adaptability of modern process control. Implementation of the hybrid model may lead to higher efficiency, reduced consumption of consumables, and stable achievement of target sulfur levels, thereby strengthening the economic competitiveness of iron production.
Downloads
References
[1] van Hattum G., Schrama F. & van den Berg B. (2015). The leading hot metal desulfurization methods: A comparison between KR, MMI and CO-injection. In: Proceedings of the Seminar on Steelmaking, Casting and Non-Ferrous Metallurgy ABM Week 2015. 46th International Steelmaking Seminar, 46(46), pp. 323–332. DOI: https://doi.org/10.5151/1982-9345-26624.
[2] Podolska A. & Falkus J. (2023). Hot metal desulfurization process as an object of physical and mathematical modelling. In: Proceedings 32nd International Conference on Metallurgy and Materials, May 17–19, 2023, Brno, Czech Republic, pp. 13–19. DOI: https://doi.org/10.37904/metal.2023.4630.
[3] Ma W., Li H., Cui Y., Chen B., Liu G. & Ji J. (2017). Optimization of desulphurization process using lance injection in molten iron. ISIJ International, 57(2), 214–219. https://doi.org/10.2355/isijinternational.ISIJINT-2016-167.
[4] Lindstrom D. (2014). A Study on Desulfurization of Hot Metal Using Different Agents [doctoral dissertation]. Swedish KTH School of Industrial Engineering and Management.
[5] Łędzki A., Klimczyk A., Stachura R., Bernasowski M. & Migas P. (n.d.). Technologia i podstawy sterowania procesami redukcji. URL: https://home.agh.edu.pl/~zmsz/pl/pliki/Technologia_i_Podstawy_Sterowania_Procesami_Redukcji.pdf [11.06.2025].
[6] Lis T. (1995). Odsiarczanie stali wapniem i magnezem z udziałem tlenkowej fazy dyspersyjej. Zeszyty Naukowe Politechniki Śląskiej. Hutnictwo, 49.
[7] Buľko B., Molnár M., Demeter P., Červenka M., Tréfa G., Mochnacká M., Baricová D., Hubatka S., Fogaraš L., & Šabík V. (2022)., Deep steel desulfurization practice Transactions of the Indian Institute of Metals, 75, 2807–2816. URL: https://link.springer.com/article/10.1007/s12666-022-02643-0.
[8] Falkus J. (1998). Fizyczne i matematyczne modelowanie procesów mieszania kąpieli metalowej w reaktorach metalurgicznych. Kraków: AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne.
[9] Visser H.-J. & Boom R. (2006). Advanced process modelling of hot metal desulphurisation by injection of Mg and CaO. ISIJ International, 46(12), 1771–1778. DOI: https://doi.org/10.2355/isijinternational.46.1771.
[10] Biljan S.N. (2014). Problems and approaches for solutions in modern injection technologies. In: 13th International Symposium for Desulfurization of Hot Metal and Steel, Almamet GmbH, 1–4 October 2014, Montecatini Terme, Italy, 51–55.
[11] Shen J.-M., Lin C.-M., Chang Y.-E., Lin H.-J. & Wu W. (2024). Effects of different CaO/Al₂O₃ ratios on the phase composition and desulfurization ability of CaO-based desulfurizers in hot metal. Metals, 14(3), 363. DOI: https://doi.org/10.3390/met14030363.
[12] Li M., Peng J., Li S., Chen R., Li C., Bao G. & Lv S. (2025). Reaction kinetics of desulphurisation of hot metal using CaO–SiO₂–Al₂O₃–MgO–TiO₂–Na₂O slag systems. Ironmaking & Steelmaking, 52(7). DOI: https://doi.org/10.1177/03019233251313935.
[13] Schrama F. (2021). Desulphurisation in 21st century ironand steelmaking (Doctoral dissertation). Delft University of Technology, Delft, Netherlands. https://doi.org/10.4233/uuid:4f1e8ff6-e910-4048-8a17-2a959c74f508.
[14] Piva S.P.T. & Pistorius P.C. (2021). Data-driven study of desulfurization during ladle treatment and its impact on steel cleanliness. In: 2021 AISTech Conference Proceedings. Nashville, TN, USA. DOI: https://doi.org/10.33313/382/085.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Angelika Podolska-Loska

This work is licensed under a Creative Commons Attribution 4.0 International License.