Influence of Cooling Rate on the Structure and Damping Properties of the AlSi6Cu4 Alloy
DOI:
https://doi.org/10.7494/jcme.2025.9.3.32Keywords:
aluminum alloys, damping coefficient, cooling rate, ultrasound testing, Al-Si alloys, grain sizeAbstract
The investigated alloy was cast as a shaft into seven casting molds. Casting molds made of different materials were characterized by different abilities to conduct heat from the sample. This property significantly influenced the cooling rate of the sample casting from the AlSi6Cu4 alloy. The highest cooling rate was achieved in a steel mold at 25°C and the lowest in a mold made of insulating mass. Different cooling rates significantly influenced the structure of the alloy. Different grain sizes were obtained and the morphology of the microstructure components changed. At the highest cooling rate of 16.63 K·s−1, a grain with an average size of 0.58 mm was obtained. However, in the mold with the lowest cooling rate of 0.36 K·s−1, the average grain size was 3.76 mm. Changes in the structure of the alloy also influenced its damping properties. The tested values f the vibration damping coefficient α indicated that the AlSi6Cu4 alloy cooling with the highest cooling rate has the highest value of damping coefficient. This is influenced by the grain size and shape of the silicon precipitates. The refinement structure and fragmented components effectively disperse the vibration wave in the structure of the casting alloy.
Downloads
References
[1] Ritchie I.G. & Pan Z.-L. (1991). High damping metals and alloys. Metallurgical Transactions A, 22, 607–616. DOI: https://doi.org/10.1007/BF02670281.
[2] Ritchie I.G., Pan Z.-L. & Goodwin F.E. (1991). Characterization of the damping properties of die-cast zinc-aluminum alloys. Metallurgical Transactions A, 22, 617–622. DOI: https://doi.org/10.1007/BF02670282.
[3] Piwowarski G. & Gracz B. (2022). The influence of cooling rate on the damping characteristics of the ZnAl4Cu1 alloy. Journal of Casting & Materials Engineering, 6(3), 58–63. DOI: https://doi.org/10.7494/jcme.2022.6.3.58.
[4] Rzadkosz S. (1995). Wpływ składu chemicznego i przemian fazowych na właściwości tłumiące i mechaniczne stopów z układu aluminium – cynk. Rozprawy i Monografie. Kraków: Wydawnictwa AGH.
[5] Krajewski W.K. (2013). Stopy cynku z aluminium. Rodzaje, właściwości, zastosowanie. Kraków: Wydawnictwo Naukowe Akapit.
[6] Górny M. & Sikora G. (2015). Effect of titanium addition and cooling rate on primary α(Al) grains and tensile properties of Al-Cu Alloy. Journal of Materials Engineering and Performance, 24(3), 1150–1156. DOI: https://doi.org/10.1007/s11665-014-1380-2.
[7] Shabestari S.G. & Malekan M. (2005). Thermal analysis study of the effect of the cooling rate on the mictrostructure and solidification parameters of 319 aluminum alloy. Canadian Metallurgical Quarterly, 44(3), 305–312. DOI: https://doi.org/10.1179/000844305794409409.
[8] Piwowarski G., Buraś J. & Szucki M. (2017). Influence of Al-Ti3C0.15 modification treatment on damping properties of ZnAl10 alloy. China Foundry, 14(4), 292–296. DOI: https://doi.org/10.1007/s41230-017-7070-6.
[9] Perepezko J.H. & Hebert R.J. (2002). Amorphous aluminum alloys– synthesis and stability. JOM, The Journal of The Minerals, Metals & Materials Society, 54, 34–39. DOI: https://doi.org/10.1007/BF02822618.
[10] Petzow G. (1999). Metallographic Etching. Techniques for Metallography. Ceramography, Plastography, 2nd Ed., ASM International, 62–63.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Grzegorz Piwowarski, Mateusz Ogrodnik

This work is licensed under a Creative Commons Attribution 4.0 International License.