Microstructure and Mechanical Properties of Rope Drum Casting

Authors

  • Peter Futáš Technical univerisity of Kosice
  • Alena Pribulová Technical univerisity of Kosice
  • David Mahút Technical univerisity of Kosice
  • Marianna Bartosova Technical univerisity of Kosice
  • Andrea Junáková Magneti Marelli

DOI:

https://doi.org/10.7494/jcme.2017.1.4.75

Abstract

Ductile iron is a high-carbon-containing iron-based alloy in which the carbon, as graphite, is present in a spheroidal shape. With its good mechanical properties, ductile iron approximates the properties of steel and the cost per unit of strength compared to other materials. With suitable metallurgical treatments, we can influence its microstructure and resulting properties. Incorrect manufacturing technology and metallurgical processes give rise to casting defects and decreased mechanical properties. The contribution is devoted to measures to prevent the occurrence of defects in the casting of rope drums and to achieve the required mechanical properties of these castings. The most-common defects in these castings are micro-shrinkages in casting heat centers and unsatisfactory mechanical properties such as tensile strength, yield strength, and elongation.

Downloads

Download data is not yet available.

References

Borsato T., Ferro P., Berto F., Carollo C. (2017). Mechanical and fatigue properties of pearlitic ductile iron castings characterized by long solidification times. Engineering Failure Analysis, 79, 902–912. doi.org/10.1016/j.engfailanal.2017.06.007

Pedersen M., Tiedje N. (2008). Graphite nodule count and size distribution in thin-walled ductile cast iron. Materials Characterization, 59, 1111–1121. doi.org/10.1016/j.matchar.2007.09.001

Lekakh S., Richards V., Medvedeva N. (2012). Effect of Si segregation on low temperature toughness of ductile iron. AFS Transactions, 120, 319–326.

Xu Z.-Y., Li D.-Y., Wang L.-H., Ma X.-L. (2017). Optimal control method of the overheating temperature and holding time for the base iron melt of ductile iron by thermal analysis. Zhuzao Foundry, 66(2), 165–169.

Stránský K., Rusín K., Koplík R. (1997). Vady odlitků. Vady odlitků – jejich klasifikace, příčiny a prevence. Slévárenství, 4, 133–135.

Górny M., Dańko R., Holtzer M. (2015). The effects of the metal temperature and wall thickness on flake graphite layer in ductile iron. Metalurgija, 54, 11–14.

Elbel T. (1992). Vady odlitků ze slitin železa: klasifikace, příčiny a prevence. MATECS Brno.

Sorelmetal (2004). The Sorelmetal book of ductile iron. Rio Tinto Iron & Titanium Inc.

Ghasemi R., Elmquist L., Svensson H., König M., Jarfors A.E.W. (2016). Mechanical properties of solid solution-strengthened CGI. International Journal of Cast Metals Research, 29(1–2), 98–105. doi.org/10.1080/13640461.2015.1106781

Kasvayee K.A., Ghassemali E., Svensson I.L., Olofsson J., Jarfors A.E.W. (2017). Characterization and modeling of the mechanical behavior of high silicon ductile iron. Materials Science and Engineering, 708, 159–170. doi.org/10.1016/j.msea.2017.09.115

Nakae H., Shin H. (2001). Effect of graphite morphology on tensile properties of flake graphite cast iron. Materials Transactions, 42(7), 1428–1434. doi.org/10.2320/matertrans.42.1428

Ceschini L., Morri A., Morri A., Salsi E., Squatrito R., Todaro I., Tomesani L. (2015). Microstructure and mechanical properties of heavy section ductile iron castings: Experimental and numerical evaluation of effects of cooling rates. International Journal of Cast Metals Research, 28(6), 365–374. doi.org/10.1179/1743133615Y.0000000022

Downloads

Published

2018-01-31

Issue

Section

Articles

How to Cite

Microstructure and Mechanical Properties of Rope Drum Casting. (2018). Journal of Casting & Materials Engineering, 1(4), 75. https://doi.org/10.7494/jcme.2017.1.4.75