Microstructure and Mechanical Properties of Rope Drum Casting
DOI:
https://doi.org/10.7494/jcme.2017.1.4.75Abstract
Ductile iron is a high-carbon-containing iron-based alloy in which the carbon, as graphite, is present in a spheroidal shape. With its good mechanical properties, ductile iron approximates the properties of steel and the cost per unit of strength compared to other materials. With suitable metallurgical treatments, we can influence its microstructure and resulting properties. Incorrect manufacturing technology and metallurgical processes give rise to casting defects and decreased mechanical properties. The contribution is devoted to measures to prevent the occurrence of defects in the casting of rope drums and to achieve the required mechanical properties of these castings. The most-common defects in these castings are micro-shrinkages in casting heat centers and unsatisfactory mechanical properties such as tensile strength, yield strength, and elongation.
Downloads
References
Borsato T., Ferro P., Berto F., Carollo C. (2017). Mechanical and fatigue properties of pearlitic ductile iron castings characterized by long solidification times. Engineering Failure Analysis, 79, 902–912. doi.org/10.1016/j.engfailanal.2017.06.007
Pedersen M., Tiedje N. (2008). Graphite nodule count and size distribution in thin-walled ductile cast iron. Materials Characterization, 59, 1111–1121. doi.org/10.1016/j.matchar.2007.09.001
Lekakh S., Richards V., Medvedeva N. (2012). Effect of Si segregation on low temperature toughness of ductile iron. AFS Transactions, 120, 319–326.
Xu Z.-Y., Li D.-Y., Wang L.-H., Ma X.-L. (2017). Optimal control method of the overheating temperature and holding time for the base iron melt of ductile iron by thermal analysis. Zhuzao Foundry, 66(2), 165–169.
Stránský K., Rusín K., Koplík R. (1997). Vady odlitků. Vady odlitků – jejich klasifikace, příčiny a prevence. Slévárenství, 4, 133–135.
Górny M., Dańko R., Holtzer M. (2015). The effects of the metal temperature and wall thickness on flake graphite layer in ductile iron. Metalurgija, 54, 11–14.
Elbel T. (1992). Vady odlitků ze slitin železa: klasifikace, příčiny a prevence. MATECS Brno.
Sorelmetal (2004). The Sorelmetal book of ductile iron. Rio Tinto Iron & Titanium Inc.
Ghasemi R., Elmquist L., Svensson H., König M., Jarfors A.E.W. (2016). Mechanical properties of solid solution-strengthened CGI. International Journal of Cast Metals Research, 29(1–2), 98–105. doi.org/10.1080/13640461.2015.1106781
Kasvayee K.A., Ghassemali E., Svensson I.L., Olofsson J., Jarfors A.E.W. (2017). Characterization and modeling of the mechanical behavior of high silicon ductile iron. Materials Science and Engineering, 708, 159–170. doi.org/10.1016/j.msea.2017.09.115
Nakae H., Shin H. (2001). Effect of graphite morphology on tensile properties of flake graphite cast iron. Materials Transactions, 42(7), 1428–1434. doi.org/10.2320/matertrans.42.1428
Ceschini L., Morri A., Morri A., Salsi E., Squatrito R., Todaro I., Tomesani L. (2015). Microstructure and mechanical properties of heavy section ductile iron castings: Experimental and numerical evaluation of effects of cooling rates. International Journal of Cast Metals Research, 28(6), 365–374. doi.org/10.1179/1743133615Y.0000000022