TG-DTG-DSC, FTIR, DRIFT and Py-GC-MS studies of thermal decomposition for poly(sodium acrylate)/dextrin (PAANa/D) – new binder BioCo3

Authors

  • Beata Grabowska AGH University of Science and Technology, Faculty of Foundry Engineering
  • Karolina Kaczmarska AGH University of Science and Technology, Faculty of Foundry Engineering
  • Artur Bobrowski AGH University of Science and Technology, Faculty of Foundry Engineering
  • Sylwia Żymankowska-Kumon AGH University of Science and Technology, Faculty of Foundry Engineering
  • Żaneta Kurleto-Kozioł AGH University of Science and Technology, Faculty of Foundry Engineering

DOI:

https://doi.org/10.7494/jcme.2017.1.1.27

Abstract

TG-DTG-DSC, FTIR, DRIFT, and Py-GC-MS studies have been conducted to determine the effect of the thermal decomposition
conditions and structure of foundry binder BioCo3 in the form of a composition poly(sodium acrylate)/dextrin
(PAANa/D) on the progress of degradation in terms of processes occurring in foundry sands in contact with liquid metal.
TG-DTG-DSC curves of the composition allowed us to determine the temperature range in which they do not undergo
degradation, by which they do not lose their binding properties. With temperature increasing, physical and chemical
changes occur that are related to the evaporation of solvent water (20–110°C), followed by the release of constitution
water, and finally intermolecular dehydration (110–230°C). In this temperature range, processes that are mainly reversible
take place. Within a temperature range of 450–826°C, polymer chains are decomposed, including the decomposition
of side chains. Within a temperature range of 399–663°C, polymer composition decomposition can be observed (FTIR,
DRIFT), and gas products are generated from this destruction (Py-GC-MS).

Downloads

Download data is not yet available.

References

Lewandowski J. L. (1995). Tworzywa na formy odlewnicze. Kraków: Akapit.

Zhou X., Yang J., Su D. & Qu G. (2009). The high-temperature resistant mechanism of α-starch composite binder for foundry. Journal of Materials Processing Technology, 209(14), 5394–5398. doi:10.1016/j.jmatprotec.2009.04.010

Fayomi O.S.I., Abdulwahab M. & Popoola A.P.I. (2014). Potentials of Elaeis guineensis and Pinus sylvestris as binders on foundry core strength. Journal of Scientific and Industrial Research, 73(3), 173–176. doi:10.5897/IJPS12.347

Miguel R.E., Ippolito J.A., Leytem A.B., Porta A.A., Banda Noriega R.B. & Dungan R.S. (2012). Analysis of total metals in waste molding and core sands from ferrous and non-ferrous foundries. Journal of Environmental Management, 110, 77–81. doi:10.1016/j.jenvman.2012.05.025

Dungan R.S., Kukier U. & Lee B. (2006). Blending foundry sands with soil: Effect on dehydrogenase activity. Science of the Total Environment, 357(1–3), 221–230. doi:10.1016/j. scitotenv.2005.04.032

Fox J.T., Cannon F.S., Brown N.R., Huang H. & Furness J.C. (2012). Comparison of a new, green foundry binder with conventional foundry binders. International Journal of Adhesion and Adhesives, 34, 38–45. doi:10.1016/j. ijadhadh.2011.11.011

Grabowska B., Szucki M., Suchy J.S., Eichholz S. & Hodor K. (2013). Thermal degradation behavior of cellulose-based material for gating systems in iron casting production.Polimery, 58(1), 39–44.

Kubecki M., Holtzer M. & Żymankowska S. (2013). Investigations of the Temperature Influence on Formation of Compounds from the BTEX Group During the Thermal Decomposition of Furan Resin. Archives of Foundry Engineering, 13(2), 85–90.

Bobrowski A., Holtzer M., Żymankowska-Kumon S. & Dańko R. (2015). Harmfulness assessment of moulding sands with a geopolymer binder and a new hardener, in an aspect of the emission of substances from the BTEX Group. Archives of Metallurgy and Materials, 60(1), 341–344. doi:10.1515/amm-2015-0056

Grabowska B., Holtzer M., Dańko, R. Górny M., Bobrowski A. & Olejnik E. (2013). New BioCo binders containing biopolymers for foundry industry. Metalurgija, 52(1), 47–50.

Grabowska B., Sitarz M., Olejnik E., Kaczmarska K. & Tyliszczak B. (2015). FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch - In moulding sands, Part II. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 151, 27–33. doi:10.1016/j.saa.2015.06.084

Pielichowski J. & Pielichowski K. (1995). Application of thermal analysis for the investigation of polymer degradation processes. Journal of Thermal Analysis, 43, 505–508.

Lattimer R.P. (2003). Pyrolysis mass spectrometry of acrylic acid polymers. Journal of Analytical and Applied Pyrolysis, 69(5), 3–14. doi:10.1016/S0165-2370(03)00080-9

Kader M.A. & Bhowmick A.K. (2003). Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates. Polymer Degradation and Stability, 79(2), 283–295. doi:10.1016/S0141-3910(02)00292-6

Lluch A.V., Felipe A.M., Greus A.R., Cadenato A., Ramis X., Salla J.M. & Morancho J.M. (2005). Thermal analysis characterization of the degradation of biodegradable starch blends in soil. Journal of Applied Polymer Science, 96(2), 358–371. doi:10.1002/app.21428

Lawal O.S., Lechner M.D. & Kulicke W.M. (2008). The synthesis conditions, characterizations and thermal degradation studies of an etherified starch from an unconventional source. Polymer Degradation and Stability, 93, 1520–1528. doi:10.1016/j.polymdegradstab.2008.05.010

Downloads

Published

2017-03-17

How to Cite

Grabowska, B., Kaczmarska, K., Bobrowski, A., Żymankowska-Kumon, S., & Kurleto-Kozioł, Żaneta. (2017). TG-DTG-DSC, FTIR, DRIFT and Py-GC-MS studies of thermal decomposition for poly(sodium acrylate)/dextrin (PAANa/D) – new binder BioCo3. Journal of Casting &Amp; Materials Engineering, 1(1), 27. https://doi.org/10.7494/jcme.2017.1.1.27

Issue

Section

Articles