Application of Basic Machine-Learning Classifiers for Automatic Anomaly Detection in Shewhart Control Charts

Authors

  • Aleksander Woźniak AGH University of Krakow, Faculty of Energy and Fuels
  • Klaudia Krawiec AGH University of Krakow, Faculty of Management
  • Roger Książek AGH University of Krakow, Faculty of Management

DOI:

https://doi.org/10.7494/dmms.2024.18.6345

Abstract

In today’s dynamic technological environment, innovation plays a crucial role – especially for manufacturing enterprises that constantly strive to improve the quality of their products. This article examines the quality-management issue in a company producing car rims. It was identified that real-time quality control can sometimes be unreliable due to controller fatigue, leading to erroneous data interpretation or delayed responses to deviations in the production process. The study aimed to investigate the possibility of eliminating or significantly reducing these errors by employing a tool that is based on artificial intelligence. The article covers the preparation of training data, the training of classifiers, and the evaluation
of their effectiveness in analyzing control charts in real time. The adopted hypothesis assumes that machine-learning classifiers can be effective methods of support for quality controllers. The research began with collecting measurement data from the machine and dividing it into training and test sets. The obtained results were evaluated using standard quality measures for machine-learning models. The results showed that the use of artificial intelligence can bring significant benefits in improving quality supervision in the production process of car rims.

References

Alfardus A. & Rawat D.B. (2023). Detection of cyberattacks in controller area network (CAN) bus system using a hybrid ML approach. In: 2023 IEEE 12th International Conference on Cloud Networking (CloudNet), pp. 53–60. DOI: https://

doi.org/10.1109/CloudNet59005.2023.10490074.

Benzaza L., Alfathi N. & Lyhyaoui A. (2023). Selecting key product characteristics to improve the QMS in automotive sector. In: J. Kacprzyk, M. Ezziyyani, V.E. Balas (Eds.), International Conference on Advanced Intelligent Systems for Sustainable Development. Lecture Notes in Networks and Systems, 714, pp. 523–531. DOI: https://doi.org/10.1007/978-3-031-35245-4_48.

Cichosz P. (2000). Systemy uczące się. Warszawa: WNT.

Cui J., Liu W., Zhang Y., Gao C., Lu Z., Li M. & Wang F. (2021). A novel method for predicting delamination of carbon fiber reinforced plastic (CFRP) based on multi-sensor data. Mechanical Systems and Signal Processing, 157, 107708. DOI:

https://doi.org/10.1016/j.ymssp.2021.107708.

Dettú F., Formentin & Savaresi S.M. (2024). The twin-in-the-loop approach for vehicle dynamics control. IEEE/ASME Transactions on Mechatronics, 29(2), pp. 1217–1228. DOI: https://doi.org/10.1109/TMECH.2023.3292503.

Escobar C.A., Chakraborty D., Arinez J. & Morales-Menendez R. (2021). Augmentation of body- in-white dimensional quality systems through artificial intelligence, In: 2021 IEEE International Conference on Big Data (Big Data), pp. 1611–1618. DOI: https://doi.org/10.1109/BigData52589.2021.9671610.

Fang X.-Y., Gong J.-E., Zhang F., Zhang H.-N. & Wu J.-H. (2023). Machine learning assisted materials design of high-speed railway wheel with better fatigue performance. Engineering Fracture Mechanics, 292, 109586. DOI: https://doi.org/10.1016/j.engfracmech.2023.109586.

Géron A. (2020). Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow. Wydanie drugie. Gliwice: Helion.

Gong W., Zhao W., Wang X., Li Z., Wang Y., Zhao X., Wang Q., Wang Y., Wang L. & Chen Q. (2023). Machine learning for laser micro/nano manufacturing: Applications and prospects. Chinese Journal of Lasers, 50(20), 2000001.

Habibullah K.M., Heyn H.-M., Gay G., Horkoff J., Knauss E., Borg M., Knauss A., Sivencrona H. & Li P.J. (2024). Requirements and software engineering for automotive perception systems: an interview study. Requirements Engineering, 29(1), pp. 25–48. DOI: https://doi.org/10.1007/s00766-023-00410-1.

Helmold M. (2021). Statistical, quality and resource management tools. Management for Professionals, Part F473, pp. 71–79. DOI: https://doi.org/10.1007/978-3-030-77661-9_7.

Hofmann J., Li Z., Taphorn K., Herzen J. & Wudy K. (2024). Porosity prediction in laser-based powder bed fusion of polyamide 12 using infrared thermography and machine learning. Additive Manufacturing, 85, 104176. DOI: https://doi.

org/10.1016/j.addma.2024.104176.

Hwarng H.B. (1992). Pattern recognition on Shewhart control charts using a neural network approach. Arizona State University [PhD Thesis].

Kalyanasundaram P., Kareti V., Sambranikar M., Ss N.K. & Ranadive P. (2018). Practical approaches for detecting DoS attacks on CAN network. SAE Technical Papers, 0019. DOI: https://doi.org/10.4271/2018-01-0019.

Kidmose B. & Meng, W. (2024). can-sleuth: Investigating and evaluating automotive intrusion detection datasets. EICC 2024: European Interdisciplinary Cybersecurity Conference, pp. 19–28. DOI: https://doi.org/10.1145/3655693.3655696.

Krummenacher G., Ong C.S., Koller S., Kobayashi S. & Buhmann J.M. (2017). Wheel defect detection with machine learning. IEEE Transactions on Intelligent Transportation Systems, 19(4), pp. 1176–1187. DOI: https://doi.org/10.1109/TITS.2017.2720721.

Kurp F. (2023). Sztuczna inteligencja od podstaw. Gliwice: Helion.

Lampe B. & Meng W. (2023). can-train-and-test: A new CAN intrusion detection dataset. In: 2023 IEEE 98th Vehicular Technology Conference. DOI: https://doi.org/10.1109/VTC2023-Fall60731.2023.10333756.

Lampe B. & Meng W. (2024). can-train-and-test: A curated CAN dataset for automotive intrusion detection. Computers and Security, 140, 103777. DOI: https://doi.org/10.1016/j.cose.2024.103777.

Lee J.-H., Lee J.-H., Yun K.-S., Bae H.B., Kim S.Y., Jeong J.-H. & Kim J.-P. (2023). A study on wheel member condition recognition using machine learning (support vector machine). Sensors, 23(20), 8455. DOI: https://doi.org/10.3390/s23208455.

Lestyán S., Acs G., Biczók G. & Szalay, Z. (2019). Extracting vehicle sensor signals from CAN logs for driver re-identification. In: Proceedings of the 5th International Conference on Information Systems Security and Privacy, pp. 136–145. DOI:

https://doi.org/10.5220/0007389501360145.

Lokman S.-F., Othman A.T. & Abu-Bakar M.-H. (2019). Intrusion detection system for automotive Controller Area Network (CAN) bus system: a review. EURASIP Journal on Wireless Communications and Networking, 2019(1). DOI: https://doi.org/10.1186/s13638-019-1484-3.

Malindzakova M., Čulková K. & Trpčevská J. (2023). Shewhart control charts implementation for quality and production management. Processes, 11(4), 1246. DOI: https://doi.org/10.3390/pr11041246.

Minawi O., Whelan J., Almehmadi A. & El-Khatib K. (2020). Machine learning-based intrusion detection system for controller area networks. In: DIVANet ‘20: Proceedings of the 10th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications, pp. 41–47. DOI: https://doi.org/10.1145/3416014.3424581.

Mjimer I., Aoula E.-S. & Achouyab E.H. (2023). Contribution of machine learning in continuous improvement processes. Journal of Quality in Maintenance Engineering, 29(2), pp. 553–567. DOI: https://doi.org/10.1108/JQME-03-2022-0019.

Moser M., Kipping S., Higuchi K. & Hirayama H. (2021). Machine-learned emission model for diesel exhaust on-board diagnostics and data flow processor as enabler. SAE Technical Papers, 5108. DOI: https://doi.org/10.4271/2021-01-5108.

Oh Y., Ransikarbum K., Busogi M., Kwon D. & Kim N. (2019). Adaptive SVM-based real-time quality assessment for primer-sealer dispensing process of sunroof assembly line. Reliability Engineering and System Safety, 184, pp. 202–212. DOI:

https://doi.org/10.1016/j.ress.2018.03.020.

Park S.-H. & Baek Y. (2023). CADS: Cyber-attack detection system using decision tree for automotive cyber-physical systems. 2023 International Conference on Electrical, Communication and Computer Engineering. DOI: https://doi.org/10.1109/ICECCE61019.2023.10442984.

Paturi U.M.R., Palakurthy S.T., Cheruku S., Vidhya Darshini B. & Reddy N.S. (2023). Role of machine learning in additive manufacturing of titanium alloys: a review. Archives of Computational Methods in Engineering, 30(8), pp. 5053–5069. DOI: https://doi.org/10.1007/s11831-023-09969-y.

Rameshkumar K., Mouli D. & Shivith K. (2021). Machine learning models for predicting grinding wheel conditions using acoustic emission features. SAE Inter-national Journal of Materials and Manufacturing, 14(4), pp. 387–406. DOI:

https://doi.org/10.4271/05-14-04-0026.

Robinson J.C., Sherman K., Price D.W. & Rathert J. (2020). Inline Part Average Testing (I-PAT) for automotive die reliability. In: O. Adan, J.C. Robinson (Eds.), Metrology, Inspection, and Process Control for Microlitography XXXIV. Proceedings of SPIE, 11325, 113250D. DOI: https://doi.org/10.1117/12.2551539.

Sharmin S., Mansor H., Abdul Kadir A.F. & Aziz N.A. (2022). Using streaming data algorithm for intrusion detection on the vehicular controller area network. Communications in Computer and Information Science, 1557, pp. 131–144. DOI:

https://doi.org/10.1007/978-981-19-0468-4_10.

Shewhart M. (1992). Interpreting statistical process control (SPC) charts using machine learning and expert system techniques. In: Proceedings of the IEEE 1992 National Aerospace and Electronics Conference@m_NAECON 1992, Dayton, OH, USA, 3, pp. 1001–1006. DOI: https://doi.org/10.1109/NAECON.1992.220472.

Shewhart W. (1926). Quality control charts. Bell System Technical Journal, 5(4), pp. 593–603. DOI: https://doi.org/10.1002/j.1538-7305.1926.tb00125.x.

Shi W., Alawieh M.B., Li X., Yu H., Arechiga N. Tomatsu N. (2016). Efficient statistical validation of machine learning systems for autonomous driving. In: 2016 IEEE/ACM International Conference on Computer-Aided Design, 7–10 November 2016, Austin, TX, USA. DOI: https://doi.org/10.1145/2966986.2980077.

Staf E. & McKelvey T. (2018). Introducing compressed mixture models for predicting long-lasting brake events. IFAC-PapersOnLine, 51(31), pp. 840–845. DOI: https://doi.org/10.1016/j.ifacol.2018.10.115.

Staněk R., Kerepecký, T., Novozámský, A., Šroubek, F., Zitová, B. & Flusser J. (2023). Real- time wheel detection and rim classification in automotive production. In: 2023 IEEE International Conference on Image Processing (ICIP), pp. 1410–1414. DOI: 10.1109/ICIP49359.2023.10223161.

Tran P.H., Ahmadi Nadi A., Nguyen T.H., Tran K. D. & Tran K.P. (2022). Application of machine learning in statistical process control charts: A survey and perspective. In: K.P. Tran (Ed.) Control Charts and Machine Learning for Anomaly Detection in Manufacturing. Springer Series in Reliability Engineering, 7–42. DOI: https://doi.org/10.1007/978-3-030-83819-5_2.

True J., Xi C., Jessurun N., Ahi K. & Asadizanjani N. (2021). Review of THz-based semiconductor assurance. Optical Engineering, 60(6), 060901. DOI: https://doi.org/10.1117/1.OE.60.6.060901.

Tsenev V. & Ivanova M. (2022). Statistical and machine learning approach for evaluation of control systems for automatic production lines. Bulletin of Electrical Engineering and Informatics, 11(5), pp. 2527–2536. DOI: https://doi.org/10.11591/eei.v11i5.3664.

Xu X., Wang G., Xuan S., Shan Y., Yang H. & Yao X. (2024). Digital twin and cross-scale mechanical interaction for fabric rubber composites considering model uncertainties. Composites Science and Technology, 248, 110431. DOI: https://

doi.org/10.1016/j.compscitech.2024.110431.

Zhou A., Liu X., Liu Q., Zhu G. & Zhang S. (2023). Progress of in-process monitoring techniques for selective laser melting. China Surface Engineering, 36(4), pp.36–50. DOI: https://doi.org/10.11933/j.issn.1007-9289.20221212001.

Downloads

Published

2024-12-12

Issue

Section

Articles

How to Cite

Application of Basic Machine-Learning Classifiers for Automatic Anomaly Detection in Shewhart Control Charts. (2024). Decision Making in Manufacturing and Services, 18, 83-98. https://doi.org/10.7494/dmms.2024.18.6345