Process Knowledge Value Proposition in Business Process Management

Authors

DOI:

https://doi.org/10.7494/dmms.2024.si.6616

Keywords:

value, business process, process knowledge, relevance, publishing house

Abstract

Business process conceptual modeling focuses on studying process scenarios and mapping workflows as well as analyzing a business actor’s behavior. Taking the process-modeling techniques that have been presented in the literature into account, the author noticed a variety of notations that were applied to the process’s description. In addition, the values in the business-process models and the management-science literature have different interpretations. In this study, the author focused on process-value identification, interpretation, and visualization and aimed to provide literature surveys on process knowledge as well as on process value. However, the academic research background is followed by another qualitative approach to capture process value and emphasize the thoughts of the business actors in a process. Hence, the case-study analysis is supplemented by a literature survey. In this case study (concerning a publishing house), process knowledge was received through interviews with the publishing house’s main editor as well as through a study of discussions that were provided by the editorial committee members. Finally, the potential advantages of the studying of process value and some limitations and challenges for the identification and modeling of value are identified. By examples, the author revealed some values that are realizable in the business process and discussed them, i.e., relevance and rigor in the publishing process. The main contribution concerned identifying and visualizing business-process value through modeling techniques. The author strongly emphasized that, in the research process as well as in the research-result-dissemination process, relevance and rigor as values should be critical. Beyond this, the author presented how goal-modeling notation i* and ArchiMate notation can be combined with e3 value-modeling notation and which consequences arrived from this combination.

References

Allee V. (2008). Value network analysis and value conversion of tangible and intangible assets. Journal of Intellectual Capital, 9(1), pp. 5–24. DOI: https://doi.org/10.1108/14691930810845777.

Benbasat I. & Zmud R.W. (1999). Empirical research in information systems: The practice of relevance. Management Information Systems Quarterly, 23(1), pp. 3–16. DOI: https://doi.org/10.2307/249403.

Cross N. (2001). Designerly ways of knowing: Design discipline versus design science. Design Issues, 17(3), pp. 49–55. URL: http://www.jstor.org/stable/1511801 [31.12.2024].

Cummins F.A. (2013). Value Delivery Modeling Language (VDML): An Update. URL: https://fredacummins.blogspot.com/2013/02/value-delivery-modeling-language-vdml_4878.html [31.12.2024].

Cummins F.A. & de Man H. (2011). Capability analysis with the value delivery modeling language. Cutter IT Journal, 24(4), pp. 33–39. URL: https://www.cutter.com/article/capability-analysis-value-delivery-modeling-language-416411 [31.12.2024].

Dingledine R. (2018). Why is it so hard to do good science? eNeuro, 5(5), e0188- 18.2018. DOI: https://doi.org/10.1523/ENEURO.0188-18.2018.

Drechsler A., Hevner A.R. & Gill T.G. (2016). Beyond rigor and relevance: Exploring artifact resonance. In: T.X. Bui & R.H. Jr. Sprague (Eds.), Proceedings of the 49th Annual Hawaii International Conference on System Sciences, 5–8 January 2016, Kauai, Hawaii, IEE Computer Society, Los Alamitos – Washington – Tokyo, pp. 4434–4443. DOI: https://doi.org/10.1109/HICSS.2016.552.

Engström E., Storey M.-A., Runeson P., Höst M. & Baldassarre M.T. (2020). How software engineering research aligns with design science: A review. Empirical Software Engineering, 25(4), pp. 2630–2660. DOI: https://doi.org/10.1007/s10664-020-09818-7.

Gill T.G. & Gill T.R. (2020). What is research rigor? Lessons for a transdiscipline. Informing Science, 23, pp. 47–76. DOI: https://doi.org/10.28945/4528.

Hennink M., Hutter I. & Bailey A. (2011). Qualitative Research Methods. Los Angeles: SAGE.

Hevner A. & Chatterjee S. (2010). Design Research in Information Systems. New York: Springer.

Hotie F. & Gordijn J. (2019). Value-based process model design. Business Information System Engineering, 61(2), pp. 163–180. DOI: https://doi.org/10.1007/s12599-017-0496-y.

Houston M.B. (2019). Four facets of rigor. Journal of the Academy of Marketing Science, 47(3), pp. 570–573. DOI: https://doi.org/10.1007/s11747-019-00665-7.

Huemer C., Schmidt A., Werthner H. & Zapletal M. (2008). A UML Profile for the e3-Value e-Business Model Ontology. In: P. Johannesson, J. Gordijn, E. Hunt, X. Franch & R. Coletta (Eds.), BUSITAL’08 Business/IT Alignment and Interoperability – Proceedings of the Third International Workshop on Business/IT Alignment and Interoperability (BUSITAL’08) held in conjunction with CAiSE’08 Conference Montpellier, France, June 16–17, 2008, pp. 1–15. URL: https://ceur-ws.org/Vol-336/paper1.pdf [31.12.2024].

Hug S.E. & Aeschbach M. (2020). Criteria for assessing grant applications: A systematic review. Palgrave Communications, 6(1), 37. DOI: https://doi.org/10.1057/s41599-020-0412-9.

Hunka F., van Kervel S.J.H. & Matula J. (2016). Towards co-creation and co-production in production chains modeled in DEMO in REA Support. In: D. Aveiro, R. Pergl & D. Gouveia (Eds.), Advances in Enterprise Engineering X, EEWC 2016. Lecture Notes in Business Information Processing, vol. 252. Cham: Springer, pp. 54–68. DOI: https://doi.org/10.1007/978-3-319-39567-8_4.

IT Governance Institute (2008). Enterprise Value: Governance of IT Investments – The Val IT Framework 2.0, 2008. Rolling Meadows, IL: ISACA.

Janse van Rensburg J.T. & Goede R. (2019). A model for improving knowledge generation in design science research through reflective practice. Electronic Journal of Business Research Methods, 17(4), pp. 192–211. DOI: https://doi.org/10.34190/JBRM.17.4.001.

Kotzé P., Van der Merwe A. & Gerber A. (2015). Design Science Research as Research Approach in Doctoral Studies. In: AMCIS 2015 Proceedings, PuertoRico, 13–15 August 2015. URL: https://www.cair.org.za/sites/default/files/2019-08/Paper_2_0.pdf [17.05.2024].

Kufeoglu S. (2020). Emerging Technologies, Value Creation for Sustainable Development. Cham: Springer.

Lamine E., Thabet R., Sienou A. & Pingaud H. (2022). The integration of risk aspects into business process management: The e-BPRIM modelling method. In: D. Karagiannis, M. Lee, K. Hinkelmann & W. Utz (Eds.), Domain-specific conceptual modeling, concepts, methods and ADOxx Tools. Cham: Springer, pp. 231–264. DOI: https://doi.org/10.1007/978-3-030-93547-4_11.

Modh S. (2005). Ethical Management, Text and Cases in Business Ethics and Corporate Governance. Delhi: Macmillan.

Mohajeri K. & Leidner D. (2017). Towards a typology of relevance. In: T.X. Bui & R. Jr. Sprague, Proceedings of 50th Hawaii International Conference on System Science. University of Hawaii at Manoa, pp. 5783–5792. URL: https://researchr.org/publication/MohajeriL17 [15.04.2024].

Mohajeri K., Mesgari M. & Lee A.S. (2020). When statistical significance is not enough: Investigating relevance, practical significance and statistical significance. Management Information Systems Quarterly, 44(2), pp. 525–559. DOI: https://doi.org/10.25300/misq/2020/13932.

Morana S., Kroenung J., Maedche A. & Schacht S. (2019). Designing process guidance systems. Journal of the Association for Information Systems, 20(5), pp. 499–535. DOI: https://doi.org/10.17705/1jais.00542.

Myers M.D. (2014). Case study research. In: M. Frenz, K. Nielsen & G. Walters (Eds.), Research Methods in Management. Los Angeles: SAGE, pp. 235–256.

Offermans T., Szymańska E., Souza F.A.A. & Jansen J.J. (2024). Process expert knowledge is essential in creating value from data-driven industrial soft sensors. Computers and Chemical Engineering, 183, 108602. DOI: https://doi.org/10.1016/j.compchemeng.2024.108602.

OMG VDML, Value Delivery Modeling Language Version 1.1, 2018. URL: https://www.omg.org/spec/VDML/ [15.04.2020].

Osterwalder A. (2004). The Business Model Ontology. A proposition in a Design Science Approach, Universite de Lausanne, Ecole de Hautes Etudes Commerciales. URL: https://www.researchgate.net/publication/33681401_The_Business_Model_Ontology_-_A_Proposition_in_a_Design_Science_Approach [10.04.2020].

Pombinho J., Mendes C., Fragoso B., Santos R., Silva N., Sixpence E. & Tibolet J. (2016). Objectifying value co-creation – An exploratory study. In: D. Aveiro, R. Pergl & D. Gouveia (Eds.), Advances in Enterprise Engineering X. EEWC 2016. Lecture Notes in Business Information Processing, vol. 252. Cham: Springer, pp. 37–53. DOI: https://doi.org/10.1007/978-3-319-39567-8_3.

Porter M. (2001). The value chain and competitive advantage. In: D. Barnes (Ed.), Understanding Business Processes. London: Routledge, pp. 50–66.

Robey D. & Markus M.L. (1998). Beyond rigor and relevance: Producing consumable research about information systems. Information Resource Management Journal, 11(1), pp. 7–15. DOI: https://doi.org/10.4018/irmj.1998010101.

Ross S.M., Morrison G.R. & Lowther D.L. (2010). Educational technology research past and present: Balancing rigor and relevance to impact school learning. Contemporary Educational Technology, 1(1), pp. 17–35. DOI: https://doi.org/10.30935/cedtech/5959.

Rosing M., von & Etzel G. (2020). Why a value-oriented process modelling concept is needed. URL: http://CEUR-WS.org/Vol-2574/short4.pdf [13.09.2024].

Stake R. (2000). Case studies. In: N.K. Denzin & Y.S. Lincoln (Eds.), Handbook of Qualitative Research. Thousand Oaks: SAGE, pp. 435–454.

Schierlinger-Brandmayr F., Moesl B., Url P., Vorraber W. & Vossner S. (2022). A modeling tool for exploring business ecosystems in a (pre-)conceptual Phase. In: D. Karagiannis, M. Lee, K. Hinkelmann & W. Utz (Eds.), Domain-specific Conceptual Modeling. Concepts, Methods and ADOxx Tools. Cham: Springer, pp. 315–338. DOI: https://doi.org/10.1007/978-3-030-93547-4_14.

Seethamraju R. & Marjanovic O. (2009). Role of process knowledge in business process improvement methodology: A case study. Business Process Management Journal, 15(6), pp. 920–936. DOI: https://doi.org/10.1108/14637150911003784.

Sithole C., Nyembwe K. & Olumbambi P. (2019). Process knowledge for improving quality in sand casting foundries: A literature review. Procedia Manufacturing, 35, pp. 356–360. DOI: https://doi.org/10.1016/j.promfg.2019.05.052.

Tebes G., Rivera M.B., Becker P., Papa F., Peppino D. & Olsina L. (2020). Specifying the Design Science Research Process: An Applied Case of Building a Software Testing Ontology. In: XXIII Conferencia Iberoamericana en Software Engineer-ing (CIbSE’20). Volume: Curan Associates, pp. 378–391. DOI: https://doi.org/10.24215/16666038.21.e12.

Teece D.J. & Linden G. (2017). Business models, value capture, and the digital enterprise. Journal of Organization Design, 6, 8. DOI: https://doi.org/10.1186/s41469-017-0018-x.

Urmetzer F., Neely A. & Martinez V. (2018). Engineering services: Unpacking value exchange. In: Y. Zhang & M. Gregory (Eds.), Value Creation through Engineering Excellence. Building Global Network Capabilities. Cham: Palgrave Macmillan, Springer Nature, pp. 75–98.

Vries M., de, Gerber A. & Van der Merwe A. (2015). The Enterprise Engineering Domain. In: D. Aveiro, R. Pergl & M. Valenta (Eds.), Advances in Enterprise Engineering IX. EEWC 2015. Lecture Notes in Business Information Processing, vol. 211. Cham: Springer, pp. 47–63. DOI: https://doi.org/10.1007/978-3-319-19297-0_4.

Wliegen H.J.W. & Van Mal H.H. (1989). The structuring of process knowledge: function, task, properties and state. Robotics and Computer-Integrated Manufacturing, 6(2), 101–107. DOI: https://doi.org/10.1016/0736-5845(89)90095-1.

Wu Z. & Liang C. 2024. A review and prospects of manufacturing process knowledge acquisition, representation, and application. Machines, 12, 416. DOI: https://doi.org/10.3390/machines12060416.

Wu Z., Li L. & Liu H. (2020). Process knowledge recommendation system for mechanical product design. IEEE Access, 8, 112795–112804. DOI: https://doi.org/10.1109/access.2020.3002922.

Yin R. (2014). Designing case studies: Identifying your case(s) and establishing the logic of your case study. In: M. Frenz, K. Nielsen & G. Walters (Eds.), Research Methods in Management. Los Angeles: SAGE, pp. 272–312.

Zhao T., Qiao L., Qie Y. & Guo K. (2018). The research on construction and application of machining process knowledge base. IOP Conference Series: Materials Science and Engineering, vol. 339, 012027. DOI: https://doi.org/10.1088/1757-899X/339/1/012027.

Downloads

Published

2024-12-31

How to Cite

[1]
Pańkowska, M. 2024. Process Knowledge Value Proposition in Business Process Management. Decision Making in Manufacturing and Services. (Dec. 2024), 9–25. DOI:https://doi.org/10.7494/dmms.2024.si.6616.