A sufficient condition for existence of constantly nondominated trajectories in linear time-invariant systems
DOI:
https://doi.org/10.7494/automat.2018.22.1.7Keywords:
multicriteria optimal control, attainable sets, reachable sets, hyperplanes methodAbstract
The paper considers multicriteria optimal control problem in linear time-invariant systems with a single bounded input. It is proven that under certain assumptions a state trajectory is nondominated throughout the whole control process if and only if it is yielded by a control signal which belongs to a particular class of bang-bang functions. Furthermore, an explicit formula relating hyperplanes tangent to attainable set and control switching times is presented.
References
Boltyanski, V. Matematyczne metody sterowania optymalnego. Wydaw. Nauk.-Techniczne, 1971.
Boltyanski, V., Gorelikova, S. Optimal synthesis for nonoscillatory controlled objects. Journal of Applied Analysis, 3.1, pp. 1-21, 1997.
Coverstone-Carroll, V., Hartmann, J.W., Mason, W.J. Optimal multi objective low-thrust spacecraft trajectories. Computer Methods in Applied Mechanics and Engineering, 186.2–4, pp. 387-402, 2000.
Graettinger, T. J., Krogh, B. H. Hyperplane method for reachable state estimation for linear time-invariant systems. Journal of Optimization Theory and Applications, 69.3, pp. 555–588, 1991.
Hairer, E., Lubich, C., Wanner, G., Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics 31, Springer Berlin, 2006.
Mitkowski, W. Stabilizacja systemów dynamicznych. Wydaw. Nauk. Techniczne, 1991.
Skulimowski, A. M. J. Solving Multicriteria Optimal Control Problems with Reference Multifunctions. 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR), Mi˛edzyzdroje, pp. 115-120, 2013.
Wierzbicki, A.P. Multiobjective Trajectory Optimization and Model Semiregularization. IFAC Proceedings Volumes, 14.2, pp. 1485-1494, 1981.