DIRECTIONS OF EXTREME STIFFNESS AND STRENGTH IN LINEAR ELASTIC ANISOTROPIC SOLIDS

Authors

  • Paweł SZEPTYŃSKI AGH University of Science and Technology

DOI:

https://doi.org/10.7494/mech.2012.31.3.124

Keywords:

linear elasticity, anisotropy, stiffness moduli, strength, optimization, material design

Abstract

An investigation for directions of extreme - maximum or minimum - values of the longitudinal and transverse stiffness moduli as well as of the limit uniaxial and limit shear stresses in anisotropic linear elastic solids is performed in the pa­per. The cases of cubic symmetry (regular crystal system) and of volumetrically isotropic cylindrical symmetry (hexago­nal crystal system with additional constraints) are considered. The systems of non-linear equations for the components of the versors of investigated directions are derived with use of the spectral decomposition of the elasticity (stiffness and compliance) tensors.

Downloads

Download data is not yet available.

References

Berryman J.G. 2005, Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries. J. Mech. Phys. Solids, 53, pp. 2141-2173.

Burzyński W. 1928, Studium nad hipotezami wytężenia, Akademia Nauk Technicznych, Lwów 1928; see also: 2009, Selected passages from Włodzimierz Burzyński 's doctoral dissertation ''Study on material effort hypotheses", Engng. Trans., 57, 3-4, pp. 185-215.

Cowin S.C., Mehrabadi M.M. 1987: On the identification of material symmetry for anisotropic elastic materials. Q. J. Mech. Appl. Math., 40, 4, pp. 451-476.

Kowalczyk-Gajewska K., Ostrowska-Maciejewska J. 2009: Review on spectral decomposition of Hooke's tensor for all symmetry groups of linear elastic material. Engns. Trans., 57, 3-4, pp. 145-183.

Mehrabadi M.M., Cowin S.C. 1990: Eigentensors of anisotropic elastic materials. Quart. J. Mech. Appl. Math., 43, 1, pp. 15-41.

Mises R. von 1928: Mechanik der plastischen Formanderung von Kristallen. Z. Angew. Math. u. Mech., pp. 8, 161-185.

Ostrowska-Maciejewska J., Rychlewski J. 2001: Generalized proper states for anisotropic elastic materials. Arch. Mech., 53, 4-5, pp. 501-518.

Rychlewski J. 1984: On Hooke 's law. J. Appl. Math. Mech., 48, pp. 303-314.

Yoo M.H., Fu C.L. 1998, Physical constants, deformation twinning, and microcracking of titanium aluminides, Metal. Mater. Trans. A, 29A, pp. 49-63.

Downloads

Issue

Section

Articles