ON NONLOCAL MODELING IN CONTINUUM MECHANICS
DOI:
https://doi.org/10.7494/mech.2015.34.2.41Keywords:
solid mechanics, long-range force interactions, nonlocal theory of elasticity, nonlocal modellingAbstract
The objective of the paper is to provide an overview of nonlocal formulations for models of elastic solids. The author presents the physical foundations for nonlocal theories of continuum mechanics, followed by various analytical and numerical techniques. The characteristics and range of practical applications for the presented approaches are discussed. The results of numerical simulations for the selected case studies are provided to demonstrate the properties of the described methods. The paper is illustrated with outcomes from peridynamic analyses. Fatigue and axial stretching were simulated to show the capabilities of the developed numerical tools.
Downloads
References
Aksoylu B., Parks M.L., 2011, Variational theory and domain decomposition for nonlocal problems. Applied Mathematics and Computation 217, 6498–6515. https://doi.org/10.1016/j.amc.2011.01.027
Arash B., Wang Q., Liew K.M., 2012, Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation. Computer Methods Applied Mechanics and Engineering 223–224, 1–9. https://doi.org/10.1016/j.cma.2012.02.002
Badnava H., Kadkhodaei M., Mashayekhi M., 2014, A non-local implicit gradient-enhanced model for unstable behaviors of pseudoelastic shape memory alloys in tensile loading. International Journal of Solids and Structures 51(23–24), 4015–4025. https://doi.org/10.1016/j.ijsolstr.2014.07.021
Balta F., Suhubi E.S., 1977, Theory of nonlocal generalised thermoelasticity. International Journal of Engineering Science 15(9–10), 579–588. https://doi.org/10.1016/0020-7225(77)90054-4
Bazant Z.P., Jirasek M., 2002, Nonlocal integral formulations of plasticity and damage: survey of progress. Journal of Engineering Mechanics 128(11), 1119–1149. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
Bobaru F., Yang M., Alves L.F., Silling S.A., Askari E., Xu J., 2009, Convergence, adaptive refinement, and scaling in 1D peridynamics. International Journal for Numerical Methods in Engineering 77, 852–877. https://doi.org/10.1002/nme.2439
Chang D.M., Wang B.L., 2015, Surface thermal shock cracking of a semi-infinite medium: a nonlocal analysis. Acta Mechanica 226, 4139–4147. https://doi.org/10.1007/s00707-015-1488-y
Chen Y., Lee J.D., Eskandarian A., 2004, Atomistic viewpoint of the applicability of microcontinuum theories. International Journal of Solids and Structures 41, 2085–2097. https://doi.org/10.1016/j.ijsolstr.2003.11.030
Di Paola M., Pirrotta A., Zingales M., 2010, Mechanically-based approach to non-local elasticity: Variational principles. International Journal of Solids and Structures 47, 539–548. https://doi.org/10.1016/j.ijsolstr.2009.09.029
Duruk N., Erbay H.A., Erkip A., 2010, Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity. Nonlinearity 23, 107–118. https://doi.org/10.1088/0951-7715/23/1/006
Duval A., Haboussi M., Zineb T.B., 2010, Modeling of SMA superelastic behavior with nonlocal approach. Physics Procedia 10, 33–38. https://doi.org/10.1016/j.phpro.2010.11.071
Eringen A.C., 1972, Linear theory of nonlocal elasticity and dispersion plane waves. International Journal of Engineering Science 10, 425–435. https://doi.org/10.1016/0020-7225(72)90050-X
Eringen A.C., 1974, Theory of nonlocal thermoelasticity. International Journal of Engineering Science 12(12), 1063–1077. Eringen A.C., 1984, Theory of nonlocal piezoelectricity. Journal of Mathematical Physics 25(3), 717–727. https://doi.org/10.1063/1.526180
Eringen A.C., 1992, Vistas of nonlocal continuum physics. International Journal of Engineering Science 30(10), 1551– 1565. https://doi.org/10.1016/0020-7225(92)90165-D
Eringen A.C., Edelen D.G.B., 1972, On nonlocal elasticity. International Journal of Engineering Science 10, 233–248. https://doi.org/10.1016/0020-7225(72)90039-0
Fornberg B., 1998, Calculation of weights in finite difference formulas. SIAM Review 40(3), 685–691. https://doi.org/10.1137/S0036144596322507
Ghrist M.L., 2000, High-order finite difference methods for wave equations. PhD thesis, University of Colorado.
Gunzburger M., Lehoucq R.B., 2010, A nonlocal vector calculus with application to nonlocal boundary value problems. Multiscale Modeling and Simulation 8(5), 1581–1598. https://doi.org/10.1137/090766607
Haque A., Ali M., 2005, High strain rate responses and failure analysis in polymer matrix composites – an experimental and finite element study. Journal of Composite Materials 39, 423–450. https://doi.org/10.1177/0021998305047094
Hu W., Ha Y.D., Bobaru F., 2012, Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Computer Methods in Applied Mechanics and Engineering 217–220, 247–261. https://doi.org/10.1016/j.cma.2012.01.016
Kaliski S., Rymarz C., Sobczyk K., Włodarczyk E., 1992, Vibrations and waves, Part B: Waves. Studies in Applied Mechanics 30B, Elsevier, Amsterdam – London – New York – Tokyo, PWN – Polish Scientific Publishers, Warsaw.
Kröner E., 1967, Elasticity theory of materials with long range cohesive forces. International Journal of Solids and Structures 3(5), 731–742. https://doi.org/10.1016/0020-7683(67)90049-2
Kunin I.A., 1967, Inhomogeneous elastic medium with non-local interactions. Journal of Applied Mechanics and Technical Physics 8(3), 60–66.
Kunin I.A., 1983, Elastic media with microstructure II: Three-dimensional models. Springer-Verlag, Berlin – Heidelberg. https://doi.org/10.1007/978-3-642-81960-5
Leamy M.J., Springer A.C., 2011, Parallel implementation of triangular cellular automata for computing two-dimensional elastodynamic response on arbitrary domains. Vibration Problems ICOVP 2011. The 10th International Conference on Vibration Problems, Náprstek J., Horácek J., Okrouhlík M., Marvalová B., Verhulst F., Sawicki J.T. (eds.), Springer Proceedings in Physics 139, 731–736. https://doi.org/10.1007/978-94-007-2069-5_98
Madenci E., Oterkus E., 2014, Peridynamic theory and its applications. Springer, New York. https://doi.org/10.1007/978-1-4614-8465-3
Martowicz A., Ruzzene M., Staszewski W.J., Rimoli J.J., Uhl T., 2014a, A nonlocal finite difference scheme for simulation of wave propagation in 2D models with reduced numerical dispersion. Proceedings of SPIE 9064, Health Monitoring of Structural and Biological Systems 2014, Article ID 90640F. https://doi.org/10.1117/12.2045252
Martowicz A., Ruzzene M., Staszewski W.J., Uhl T., 2014b, Non-local modeling and simulation of wave propagation and crack growth. AIP Conference Proceedings 1581, 513, AIP Publishing. https://doi.org/10.1063/1.4864863
Martowicz A., Staszewski W.J., Ruzzene M., Uhl T., 2014c, Vibro-acoustic wave interaction in cracked plate modeled with peridynamics. A Proceedings of the WCCM XI, ECCM V, ECFD VI, Onate E., Oliver X., Huerta (eds.), International Center for Numerical Methods in Engineering, Barcelona, Spain, 4021–4027.
Martowicz A., Ruzzene M., Staszewski W.J., Rimoli J.J., Uhl T., 2015a, Out-of-plane elastic waves in 2D models of solids: A case study for a nonlocal discretization scheme with reduced numerical dispersion. Mathematical Problems in Engineering 2015, Article ID 584081. https://doi.org/10.1155/2015/584081
Martowicz A., Staszewski W.J., Ruzzene M., Uhl T., 2015b, Peridynamics as an analysis tool for wave propagation in graphene nanoribbons. Proceedings of SPIE, Volume 9435: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Lynch J.P. (ed.), San Diego, USA, Article ID 94350I. https://doi.org/10.1117/12.2084312
Meyers M., Chawla K., 2009, Mechanical behaviour of materials. Cambridge University Press, Cambridge.
Ostoja-Starzewski M., 2013, From random fields to classical or generalized continuum models. Procedia IUTAM 6, 31–34. https://doi.org/10.1016/j.piutam.2013.01.003
Polizzotto C., 2001, Nonlocal elasticity and related variational principles. International Journal of Solids and Structures 38, 7359–7380. https://doi.org/10.1016/S0020-7683(01)00039-7
Rodriguez-Ferran A., Morata I., Huerta A., 2004, Efficient and reliable nonlocal damage models. Computer Methods in Applied Mechanics and Engineering 193, 3431–3455. https://doi.org/10.1016/j.cma.2003.11.015
Seleson P., Parks M.L., Gunzburger M., Lehoucq R.B., 2009, Peridynamics as an upscaling of molecular dynamics. Multiscale Modeling and Simulation 8(1), 204–227. https://doi.org/10.1137/09074807X
Sguazzero P., Kindelan M., 1990, Dispersion-bounded numerical integration of the elastodynamic equations with cost-effective staggered schemes. Computer Methods in Applied Mechanics and Engineering 80(1–3), 165–172. https://doi.org/10.1016/0045-7825(90)90020-M
Silling S., 2000, Reformulation of elasticity theory for discontinuities and long-range forces. Journal of Mechanics Physics of Solids 48, 175–209. https://doi.org/10.1016/S0022-5096(99)00029-0
Tam C.K.W., Webb J.C., 2011, Dispersion-relation-preserving finite difference schemes for computational acoustics. Journal of Computations Physics 107(2), 262–281. https://doi.org/10.1006/jcph.1993.1142
Yang D., Tong P., Deng X., 2012, A central difference method with low numerical dispersion for solving the scalar wave equation. Geophysical Prospecting 60, 885–905. https://doi.org/10.1111/j.1365-2478.2011.01033.x
Zhang L.L., Liu J.X., Fang X.Q., Nie G.Q., 2014, Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates. European Journal of Mechanics – A/Solids 46, 22–29. https://doi.org/10.1016/j.euromechsol.2014.01.005
Zingales M., 2011, Wave propagation in 1D elastic solids in presence of long-range. Journal of Sound and Vibration 330, 3973–3989. https://doi.org/10.1016/j.jsv.2010.10.027
Downloads
Published
Issue
Section
License
Remember to download, sign, scan and attach the copyright notice
This file should be uploaded as a Supplementary file (Step 4) of the submission procedure.