ASSESSMENT OF THE MATERIAL STRENGTH OF ANISOTROPIC MATERIALS WITH ASYMMETRY OF THE ELASTIC RANGE

Authors

  • Piotr Kordzikowski Cracow University of Technology
  • Ryszard Pęcherski AGH University of Science and Technology

Keywords:

anisotropic materials, strength hypotheses, energy-based elastic limit criteria, elastic eigen states, the criteria of material effort, asymmetry of elastic range, strength differential effect

Abstract

The aim of the paper is to apply the energy-based criterion of limit elastic states for the assessment of the material effort of anisotropic materials. The linear elastic anisotropic materials in the plane state of stress are considered. The theory of elastic eigen states determined by the symmetry of the Hooke elastic tensors (stiffness and compliance tensors) and the energy-based criterion of elastic limit states for anisotropic materials is used according to the theory proposed by Jan Rychlewski. Experimental data for paperboard and the results of atomic calculations were applied. The common feature of the aforementioned materials is the strength differential effect related to the asymmetry of the elastic range. Often, to determine the degree of this asymmetry one uses the ratio of the experimentally measured limit of elasticity (yield) in compression to the limit of elasticity in tension. Also, the failure criterion of P. S. Theocaris is mentioned within the discussion of the possibility of the extension of the criterion proposed by Rychlewski for anisotropic materials revealing asymmetry of elastic range and the related strength differential effect.

Downloads

Download data is not yet available.

References

Beltrami E. 1885, Sulla condizioni di resistenza dei corpi elastici. Rend. Ist. Lomb. II, 18-27 (also in: Opere matem., vol. IV, Milano, 1920, 180-189).

Biegler M.W., Mehrabadi M.M. 1995, An energy-based constitutive model for anisotropic solids subject to damage. Mechanics of Materials, 19, 151-164.

Burzyński W. 1928, Studjum nad hipotezami wytężenia. Akademija Nauk Technicznych, Lwów; also: Burzyński W. 1982, Dzieła wybrane, part 1, PWN, Warszawa, 67-258 and English translation: Study on Material Effort Hypotheses (selected passage from doctoral dissertation), Enging. Trans., 57, 2009, 185-215.

Hencky H. 1924, Zur Theorie plastischer Deformationen und der hierdurch im Material herforgerufenen Nachspannungen. ZAMM, 4, 323-334.

Huber M.T. 1904, Właściwa praca odkształcenia jako miara wytężenia materiału. Czasopismo Techniczne XXII, Lwów, English translation: Specific work of strain as a measure of material effort, Arch. Mech., 56, No. 3, 173-190, 2004.

Janus-Michalska M., Pęcherski R.B. 2003, Macroscopic properties of open-cell foams based on micromechanical modelling. Technische Mechanik, 23, 234-244.

Kordzikowski P., Janus-Michalska M., Pęcherski R.B. 2005, Specification of energy-based criterion of elastic limit states for cellular materials. Archives of Metallurgy and Materials, 50, 3, 621-634.

Kordzikowski P. Pęcherski R.B. 2010, Próba rozszerzenia kryterium energetycznego Rychlewskiego w zastosowaniu do oceny wytężenia wybranych materiałów anizotropowych z asymetrią zakresu sprężystego. Rudy Metale, R55, 89-95.

Kordzikowski P. 2007, Zastosowanie energetycznego kryterium Rychlew-skiego do oceny wytężenia anizotropowych cienkich warstw wykazujących efekt różnicy wytrzymałości, Rudy i Metale Nieżelazne, 52, Nr 11, 689-695.

Kowalczyk K., Ostrowska-Maciejewska J., Pęcherski R.B. 2003, An-energy based yield criterion for solids of cubic elasticity and ortho-tropic limit state. Arch. Mech., 55, 431-448.

Lund A.C., Schuh C.A. 2005, Strength asymmetry in nano-crystalline metals under multiaxial loading. Acta Materialia, 53, 3193-3205.

Maxwell C. 1936, Origins of Clerk Maxwell's electric ideas as described in familiar letters to William Thompson. Cambridge at the University Press 1937, Proc. Cambridge Phil. Soc., 32, 161-185.

Mises R. 1913, Mechanik der festen Körper im plastisch-deformablen Zustand. Göttingen Nachrichten, Math. phys. Klasse, Z. 4 (1), 582-592.

Mises R. 1928, Mechanik der plastischen Formänderung von Kristallen. ZAMM, 8, 161-185.

Nalepka K., Pęcherski R.B. 2003, Energetyczne kryteria wytężenia. Propozycja obliczania granicznych energii z pierwszych zasad. Rudy i Metale Nieżelazne, 48, 533-536.

Oller S., Car E., Lubliner J. 2003, Definition of a general implicit ortho-tropic yield criterion. Comput., Methods Appl. Mech. Engrg., 192, 895-912.

Ostrowska-Maciejewska J., Pęcherski R.B., Anizotropia sprężysta i wytężenie cienkich warstw i powłok. PAN IMilM im. A. Krupkowskiego - IPPT PAN, Kraków 2006.

Rychlewski J. 1984, Elastic energy decomposition and limit criteria. Uspekhi Mekh. -Advances in Mech., 7, 51-80 (in Russian).

Rychlewski J. 1995, Unconventional approach to linear elasticity. Arch. Mech., 47, 149-171.

Suhling J.C., Rowlands R.E., Johnson M.W., Gunderson D.E. 1985, Ten-sorial Strength Analysis of Paperboard. Exp. Mech., 25, 75-84.

Theocaris P.S. 1989, Failure Behaviour of Paper Sheets. Journal of Reinforced Plastics and Composites, 8, 601-626.

Theocaris P.S. 1989, The elliptic paraboloid failure surface for 2D-trans-tropic plates (fiber laminates). Engineering Fracture Mechanics, 33, No. 2, 185-203.

Theocaris P.S. 1989, Decomposition of strain energy density in fiber reinforced composites. Engineering Fracture Mechanics, 33, 3, 335343.

Downloads

Published

2010-07-22

Issue

Section

Articles