THE STRENGTH OF THE INTERFACIAL BOND IN THE CERAMIC MATRIX COMPOSITES Al2O3-Ni

Authors

  • Kinga Nalepka AGH University of Science and Technology
  • Ryszard Pęcherski Institute of Fundamental Technological Research

Keywords:

ceramic matrix composites, Al2O3-Ni interface

Abstract

Using the results of High Resolution Transmission Electron Microscopy studies of epitaxial layers fcc metal/corundum we have proposed atomistic model of the interfacial structure of the Al2O3-Ni composite. Then, we have carried out the verification of the CTIP+EAM model in the application to the description of interatomic interactions in the region of the interface. The assumed model of interactions has allowed us to identify the structure in the neighborhood of the interface. The obtained structure is consistent with experimental data.

Downloads

Download data is not yet available.

References

International Tables for Crystallography Volume A: Space-group symmetry. Springer Netherlands (2002).

Kraft T., Marcus P.M. 1993, Elastic constants of Cu and the instability of its bcc structure. Phys. Rev. B, 48, 5886-5890.

LAMMPS Users Manual, Sandia Corporation, 2003.

Medlin D.L. et al. 1997, Orientation relationships in heteroepitaxial aluminum films on sapphire. Thin Solid Films, 299, 110-114.

Moya J.S. et al. 2007, The challenge of ceramic/metal microcomposites and nanocomposites. Progress in Materials Science, 52, 1017-1090.

Nalepka K. 2005, Physical foundations of energy-based criterion of material effort for anisotropic solids on the example of a single cupper crystal (in Polish) - doctor thesis, supervisor: prof. R.B. P^-cherski.

Nalepka K., P^cherski R.B. 2009, Modeling of the interatomic interactions in the copper crystal applied in the structure (111)Cu(0001)Al2O3. Archives of Metallurgy and Materials, 54, 512-522.

Payne M.C. et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64, 1045-1096 (1992).

Phillips R. 2001, Crystals, Defects and Microstructures Modelling Across Scales, Cambridge.

Plimpton S.J. 1995, Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys., 117, 1-19.

Scheu C. et al. 2006, Bonding at copper-alumina interfaces established by different surface treatments: a critical review. J. Mater. Sci., 41, 5161-5168.

Sekino T. et al. 1997, Reduction and Sintering of a Nickel-Dispersed-Alumina Composite and Its Properties. J. Am. Ceram. Soc., 80, 1139-1148.

Shi S. et al. 2007a, First-Principles Investigation of the Atomic and Electronic Structure of a-Al2O3(0001)/Ni(111) Interfaces. J. Am. Ceram. Soc., 90, 2429-2440.

Shi S. et al. 2007b, First-principles study of the tensile strength and the failure of a-Al2O3(0001)/Ni(111) interfaces. Phys. Rev. B, 76, 075431.

Villars P. 1991, Pearson's Handbook of Crystallographic Data for Inter-metallic Phases. ASM International(OH).

Yang R. et al. 2005, First-principles study on the tensile strength and fracture of the Al-terminated stoichiometric a-Al2O3(0001)/Cu(111) interface, Phil. Mag., 85, 2961-2976.

Zhang W. et al. 2006, The connection between ab initio calculation and interface adhesion measurements on metal oxide systems: Ni/A^O3 andNi/Al2O3. Acta Mater., 50, 3803-3816.

Zhou X.W. et al. 2004, Modified charge transfer - embedded atom method potential for metal/metal oxide systems. Phys. Rev. B, 69, 035402.

Zhou X.W. et al. 2005, A charge transfer ionic - embedded atom method potential for the O-Al-Ni-Co-Fe. J. Phys.: Condens. Matter, 17, 3619-3635.

Zhou X.W. et al. 2009, Molecular-dynamics-based cohesive zone law for brittle interfacialfracture under mixed loading conditions: Effects of elastic constant mismatch. Acta Mater., 57, 4671-4686.

Downloads

Published

2010-10-17

Issue

Section

Articles