ANALYSIS OF THE MINING TORQUE SIGNAL WITH CONTINUOUS WAVELET TRANSFORM

Authors

  • Józef Jonak Lublin University of Technology
  • Łukasz Jedliński Lublin University of Technology
  • Jakub Gajewski Lublin University of Technology

Keywords:

Continuous Wavelet Transform, multi-tool head, artificial neural network

Abstract

This paper presents an analysis of the excavation torque signal with the use of a Continuous Wavelet Transform. The article also presents results of preliminary research on utilising neural networks to identify excavating cutting tools type used in multi-tool excavating heads of mechanical coal miners.

Selected wavelet coefficients were used as data to teach artificial neural network. The research is necessary to identify rock excavating process with a given head, and design adaptation system for control of mining process with such a head. The results of numerical analyses conducted with the use of Neural Networks are presented.

Downloads

Download data is not yet available.

References

Białasiewicz J.T. 2004, Falki i aproksymacje. 2nd ed. WNT, Warszawa, ISBN 83-204-2971-4.

Czech P., Łazarz B. 2007, Klasyfikacja rodzaju i stopnia uszkodzenia zębów kół przekładni oparta na ciągłej transformacie falkowej i sieci neuronowej typu MLP - koncepcja wykorzystania danych z modelu i rzeczywistej przekładni. Diagnostyka, No. 2, pp. 75-82.

Gajewski J., Jonak J. 2006, Utilisation of neural networks to identify the status of the cutting tool point. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, vol. 21, Issue 2, pp. 180-184.

Jonak J., Gajewski J. 2008, Identification of ripping tool types with the use of characteristic statistical parameters of time graphs. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, vol. 23, Issue 1, pp. 18-24.

Jonak J., Gajewski J. 2006, Identifying the cutting tool type used in excavations using neural networks. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, vol. 21, Issue 2, pp. 185-189.

Litak G., Syta A., Gajewski J., Jonak J. 2010, Detecting and identifying non-stationary courses in the ripping head power consumption by recurrence plots. Meccanica, vol. 45, No. 4, DOI 10.1007/s11012-009-9265-4, pp. 603-608.

Loutridis S.J. 2008, Gear failure prediction using multiscale local statistics. Engineering Structures, vol. 30, No. 5, pp. 1214-1223.

Misiti M., Misiti Y., Oppenheim G., Poggi J.M. 2002, Wavelet Toolbox User's Guide. ver. 2, The MathWorks, Inc.

StatSoft (2006), Elektroniczny Podręcznik Statystyki PL. Krakow, WEB: http://www.statsoft.pl/textbook/stathome.html.

Zimroz R. 2009, Zastosowanie analizy falkowej w diagnostyce uszkodzeń lokalnych układów napędowych maszyn górniczych. Diagnostyka, No. 1, pp. 113-122.

Kwaśniewski J. 2001, Zastosowanie wybranych metod analizy sygnału niestacjonarnego w diagnozowaniu lin i rur stalowych. Studia Monografie Rozprawy, Kraków, PAN, IGSMiE, nr 86.

Downloads

Published

2011-01-17

Issue

Section

Articles