3-D Microstructure Reconstruction of Tetragonal Zirconia Polycrystalline

Authors

DOI:

https://doi.org/10.7494/

Keywords:

microstructure, polycrystals, tessellation, 3-d reconstruction, simulations

Abstract

The microstructure of a material is fundamental to its properties and behavior under mechanical and thermal loads. Understanding the internal structure of a material and controlling the microstructure at the stage of ceramic materials synthesis are essential for designing materials with desired properties. This study focuses on the three-dimensional reconstruction of the microstructure of yttria-stabilized tetragonal zirconia polycrystalline (TZP). The goal was to create accurate digital models of the microstructure, which could be used for further material analysis.

The study utilized images obtained through scanning electron microscopy (SEM), based on which the basic stereological parameters were determined. The microstructure reconstruction was performed using the Laguerre tessellation method, allowing for the generation of three-dimensional digital models of the microstructure that represent the material's internal structure.

The results confirm that based on the basic stereological parameters obtained from two-dimensional cross-sections, three-dimensional reconstruction of the microstructure of polycrystalline zirconia is possible. This work, therefore, represents a step towards the effective design of ceramic materials with high performance parameters, through the control and optimization of their microstructure.

Downloads

References

[1] Grabowski G. (2022). Mikrostruktura jako podstawa modelowania numerycznego właściwości tworzyw ceramicznych. Kraków: Wydawnictwo Naukowe „Akapit”.

[2] Salvo L., Suéry M., Marmottant A., Limodin N. & D. Bernard. (2010). 3D imaging in material science: Application of X-ray tomography. Comptes Rendus Physique, 11(9-10), pp. 641–649. doi:10.1016/j.crhy.2010.12.003.

[3] Reischig P., King A., Nervo L., Viganó N., Guilhem Y., et al. (2013). Advances in X-ray diffraction contrast tomography: flexibility in the setup geometry and application to multiphase materials. Journal of Applied Crystallography, 46(2), pp. 297–311. doi:10.1107/S0021889813002604.

[4] Maire E. & Withers P. J. (2014). Quantitative X-ray tomography. International Materials Reviews, 59(1), pp. 1–43. doi:10.1179/1743280413Y.0000000023.

[5] Poulsen H. (2020). Multi scale hard x-ray microscopy. Current Opinion in Solid State and Materials Science, 24(2), pp. 100820–1–9. doi:10.1016/j.cossms.2020.100820.

[6] Faryna M., Głowiński K., Chulist R. & Pędzich Z. (2023). Influence of Sintering Conditions on Anisotropy of Grain Boundary Networks and Microstructure Topology in Yttria-Stabilized Zirconia. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 54(11), pp. 4372–4386. doi:10.1007/s11661-023-07171-0.

[7] Groeber M. A., Haley B. K., Uchic M. D., Dimiduk D. M. & Ghosh S. (2006). 3D reconstruction and characterization of polycrystalline microstructures using a FIB–SEM system. Materials Characterization, 57(4-5), pp. 259–273. doi:10.1016/j.matchar.2006.01.019.

[8] Uchic M. D., Holzer L., Inkson B. J., Principe E. L. & Munroe P. (2007). Three-Dimensional Microstructural Characterization Using Focused Ion Beam Tomography. MRS Bulletin, 32(05), pp. 408–416.

[9] Bobrowski P., Pędzich Z. & Faryna M. (2015). Three-dimensional microstructural characterization of porous cubic zirconia. Micron, 78, pp. 73–78.

[10] Bobrowski P., Faryna M. & Pędzich Z. (2017). Microstructural Characterization of Yttria-Stabilized Zirconia Sintered at Different Temperatures Using 3D-EBSD, 2D-EBSD and Stereological Calculations. Journal of Materials Engineering and Performance, 26(10), pp. 4681–4688. doi:10.1007/s11665-017-2794-4.

[11] Schlüter S., Sheppard A., Brown K. & Wildenschild D. (2014). Image processing of multiphase images obtained via X-ray microtomography: A review. Water Resources Research, 50(4), pp. 3615–3639.

[12] Madej L. (2017), Digital/virtual microstructures in application to metals engineering – A review. Archives of Civil and Mechanical Engineering, 17(4), pp. 839–854.

[13] Bargmann S., Klusemann B., Markmann J., Schnabel J. E., Schneider K., et al. (2018). Generation of 3D representative volume elements for heterogeneous materials: A review. Progress in Materials Science 96, pp. 322–384.

[14] Bostanabad R., Zhang Y., Li X., Kearney T., Brinson L. C., et al. (2018). Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques. Progress in Materials Science, 95, pp. 1–41.

[15] Kumar S., Kurtz S. K., Banavar J. R. & Sharma M. G. (1992). Properties of a three-dimensional Poisson-Voronoi tesselation: A Monte Carlo study. Journal of Statistical Physics, 67(3-4), pp. 523–551. doi:10.1007/BF01049719.

[16] Frazier W. E., Hu S. & Joshi V. V. (2020). A Potts Model parameter study of particle size, Monte Carlo temperature, and “Particle-Assisted Abnormal Grain Growth”. Computational Materials Science, 185. doi:10.1016/j.commatsci.2020.109945.

[17] Madej L., Sieradzki L., Sitko M., Perzynski K., Radwanski K., et al. (2013). Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure. Computational Materials Science, 77, pp. 172–181. doi:10.1016/j. commatsci.2013.04.020.

[18] Svyetlichnyy D. S. (2014). A three-dimensional frontal cellular automaton model for simulation of microstructure evolution-initial microstructure module. Modelling and Simulation in Materials Science and Engineering, 22(8), pp. 085001-1–19. doi:10.1088/0965-0393/22/8/085001.

[19] Ogawa J. & Natsume Y. (2021). Three-dimensional large-scale grain growth simulation using a cellular automaton model. Computational Materials Science, 199, pp. 110729. doi:10.1016/j.commatsci.2021.110729.

[20] Ghosh S., Lee K. & Moorthy S. (1995). Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method. International Journal of Solids and Structures, 32(1), pp. 27–62. doi:10.1016/0020-7683(94)00097-G.

[21] Fritzen F., Böhlke T. & Schnack E. (2009). Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations. Computational Mechanics, 43(5), pp. 701–713. doi:10.1007/s00466-008-0339-2.

[22] Grabowski G. (2019). Modelling of thermal expansion of single- and two-phase ceramic polycrystals utilizing synthetic 3D microstructures. Computational Materials Science, 156, pp. 7– 16. doi:10.1016/j.commatsci.2018.09.020

[23] Carneiro P. M., Gamboa P. V., Baudín C. & Silva A. P. (2020). Modelling of elastic modulus of a biphasic ceramic microstructure using 3D representative volume elements. Journal of the European Ceramic Society, 40(3), pp. 901–910. doi:10.1016/j.jeurceramsoc.2019.10.046.

[24] Grabowski G. (2017). Trójwymiarowa rekonstrukcja mikrostruktury polikrystalicznego tlenku glinu metodą teselacji Laguerre’a. Materiały Ceramiczne/ Ceramic Materials, 69(3), pp. 252– 257.

[25] Telley H., Libeling T. M. & Mocellin A. (1996). The Laguerre model of grain growth in two dimensions II. Examples of coarsening simulations. Philosophical Magazine Part B, 73(3), pp. 409–427. doi:10.1080/13642819608239126.

[26] Johansson S. A., Öhman M., Ekh M. & Wahnström G. (2019). CCBuilder: a software that produces synthetic microstructures of WC-Co cemented carbides. International Journal of Refractory Metals and Hard Materials, 78, pp. 210–218. doi:10.1016/j.ijrmhm.2018. 09.011.

[27] Quey R. & Kasemer M. (2022). The Neper/FEPX Project: Free / Open-source Polycrystal Generation, Deformation Simulation, and Post-processing. IOP Conference Series: Materials Science and Engineering 1249(1). doi:10.1088/1757-899X/1249/1/012021.

[28] Castle M. & Keller J. (2023). Rolling Ball Background Subtraction. https://imagej.net/ij/plugins/rolling-ball.html (visited on February 12. 2025).

[29] Leymarie F. & Levine M. (1992). Fast raster scan distance propagation on the discrete rectangular lattice. CVGIP: Image Understanding, 55(1), pp. 84–94. doi:10.1016/1049-9660(92) 90008-Q.

[30] Legland D., Arganda-Carreras I. & Andrey P. (2016). MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics, 32(22), pp. 3532–3534. doi:10.1093/bioinformatics/btw413.

[31] Rasband W. S. (2020). ImageJ. https://imagej.net/ij/ (visited on February 12. 2025).

[32] Scheil E. (1931). Die Berechnung der Anzahl und Größenverteilung kugelförmiger Kristalle in undurchsichtigen Körpern mit Hilfe der durch einen ebenen Schnitt erhaltenen Schnittkreise. Zeitschrift für Anorg. und Allg. Chemie, 201(1), pp. 259–264. doi:10. 1002/zaac.19312010123.

[33] Schwartz H. A. (1934). The Metallographic Determination of the Size Distribution of Temper Carbon Nodules. Met. Alloy., 5, pp. 139–140.

[34] Saltykov S. A. (1958). Stereometric Metallography. 2nd ed. Moscow: Metallurgizdat.

[35] Takahashi J. & Suito H. (2003). Evaluation of the accuracy of the three-dimensional size distribution estimated from the Schwartz-Saltykov method. Metall. Mater. Trans. A, 34(1), pp. 171–181. doi:10.1007/s11661-003-0218-6.

[36] Fan Z., Wu Y., Zhao X. & Lu Y. (2004). Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres. Computational Materials Science, 29(3), pp. 301–308.

[37] Wu Y., Zhou W., Wang B. & Yang F. (2010). Modeling and characterization of two-phase composites by Voronoi diagram in the Laguerre geometry based on random close packing of spheres. Computational Materials Science, 47(4), pp. 951–961. doi:10.1016/j.commatsci.2009.11.028.

[38] Liebscher A., Jeulin D. & Lantuéjoul C. (2015). Stereological reconstruction of polycrystalline materials. Journal of Microscopy, 258(3), pp. 190–199. doi:10.1111/jmi.12232.

[39] De Souza D. S., da Silva Assis W. L., Rios P. R. & da Fonseca G. S. (2014). Stereological analysis of the microstructure of pure iron with random nucleation. Journal of Materials Research and Technology, 3(4), pp. 349–353. doi:10.1016/j.jmrt.2014.08.002.

[40] Quey R. (2023). Neper. https://neper.info/ (visited on February 12. 2025).

[41] Quey R., Dawson P. & Barbe F. (2011). Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Computer Methods in Applied Mechanics and Engineering, 200(17-20), pp. 1729–1745. doi:10.1016/j.cma.2011.01.002.

Downloads

Published

2025-03-28

Issue

Section

Articles

How to Cite

Grabowski, G. (2025). 3-D Microstructure Reconstruction of Tetragonal Zirconia Polycrystalline. Journal of Casting & Materials Engineering, 9(1), 1-7. https://doi.org/10.7494/