Theoretical Possibilities of Controlling the Cooling Rate in the Heat Treatment of Cast Iron with Water Mist
DOI:
https://doi.org/10.7494/jcme.2024.8.4.68Keywords:
Austempered Ductile Iron, quench, PID controller, system identification, digital control systemAbstract
The goal of the cooling procedure after austenitizing in the austempering heat treatment process applied to ausferritic ductile iron (ADI) castings is to rapidly reduce the temperature throughout the casting volume to the temperature range of the process window in which the proper metal matrix structure is formed. The lower limit of this range must be higher than the temperature at which the martensitic transformation starts. The upper limit is selected to eliminate the possibility of diffusion decomposition of austenite while holding castings at austempering temperature. Most often in heat treatment practice, salt baths are used for this purpose. Such a solution makes it possible to realize in one device both the procedure of cooling down to a given temperature and the procedure of isothermal heat treatment at this temperature. Unfortunately, the presence of molten salt in the process equipment has a very unfavorable impact on working conditions and ecology. The purpose of this research is to analyze the possibility of replacing the salt bath cooling procedure in the manufacturing process of ADI castings with a water mist spray cooling procedure on the surfaces of the heat-treated casting. If such cooling is effective, subsequent procedures of heat treatment operations can be carried out with traditional furnace equipment without the use of molten salt, which will clearly improve the environmental performance of the enterprise. The article, using analytical and numerical methods, analyzes the possibility of cooling objects made of cast iron with the help of a high-efficiency heat receiver such as water mist spraying. The limiting conditions for carrying out the process for the assumed cooling curve were considered. It was proposed to use a PID controller realizing the function of controlling the intensity of water mist spray, which corresponds to the intensity of the heat flux received from the heat-treated casting. The theoretical analysis carried out allows us to conclude that water mist cooling according to the assumed cooling curve is practically feasible.
Downloads
References
Ostrowski D., Gumienny G., Sikora M., Kruszyński B. & Pacyniak T. (2015). Obrabialność żeliwa sferoidalnego ADI w procesie szlifowania zewnętrznych powierzchni cylindrycznych. XXXVIII Naukowa Szkoła Obróbki Ściernej. Łódź – Uniejów, 262–265. Doi: https://doi.org/10.17814/mechanik.2015.8-9.381.
Myszka D. & Babul T. (2006). Obróbka cieplna żeliwa sferoidalnego w złożach fluidalnych. Archiwum Odlewnictwa, 6(20), 177–184.
Kaczorowski M., Borowski A. & Waszkiewicz S. (1999). Badania struktury i własności żeliwa syntetycznego hartowanego izotermicznie w złożu fluidalnym. Krzepnięcie Metali i Stopów, 1(40), 159–164.
Cebo-Rudnicka A. (2011). Wpływ warunków chłodzenia oraz przewodności cieplnej wybranych metali na współczynnik wymiany ciepła w procesie chłodzenia z natryskiem wodnym [doctoral dissertation]. Kraków: Akademia Górniczo-Hutnicza.
Władysiak R. (2008). Water mist effect on heat transfer coefficient in cooling of casting die. Archives of Foundry Engineering, 8(3), 227–236.
Władysiak R. (2008). Water mist effect on cooling range and efficiency of casting die. Archives of Foundry Engineering, 8(4), 213–218.
Górny Z., Kluska-Nawarecka S., Czekaj E. & Saja K. (2011). Application of microjet in heat treatment of aluminium bronzes. Archives of Foundry Engineering, 11(2), 35–40.
Czekaj E., Kwak Z. & Garbacz-Klempka A. (2017). Comparison of impact of immersed and micro-jet cooling during quenching on microstructure and mechanical properties of hypoeutectic silumin AlSi7Mg0.3. Metallurgy and Foundry Engineering, 43(3), 153–168. Doi: https://doi.org/10.7494/mafe.2017.43.3.153.
Vourinen J., Ingman Y., Johansson M. & Kurkinen M. (1975). Finland Patent No. 377,035. Kuusankoski, Finland
Mochnacki B. & Suchy J.S. (1993). Modelowanie i symulacja krzepnięcia odlewów. Warszawa: Państwowe Wydawnictwo Naukowe PWN.
Burbelko A.A. (2018). Modelowanie komputerowe krystalizacji odlewów w skali makro i mikro. Katowice – Gliwice: Wydawnictwo Komisji Odlewnictwa PAN.
Mrzygłód B., Kluska-Nawarecka S., Kowalski A. & Wilk-Kołodziejczyk D. (2013). Wykorzystanie wykresów CTP niskostopowego żeliwa sferoidalnego do opracowania technologii wytwarzania żeliwa ADI. Prace Instytutu Odlewnictwa, 53(4), 85–111. Doi: https://doi.org/10.7356/iod.2013.24.
Jasiewicz E., Hadała B., Cebo-Rudnicka A., Malinowski Z. & Jasiewicz K. (2023). Comparison of the heat transfer efficiency of selected water cooling systems. 15th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics: Virtual conference, 26–28 July 2021. Proceedings, 493–498. Doi: https://doi.org/10.2139/ssrn.4333923.
Hnizdil M., Chabicovsky M., Raudensky M. & Lee T.-W. (2016). Heat transfer during spray cooling of flat surfaces with water at large Reynolds numbers. Journal of Flow Control, Measurement & Visualization, 4(3), 104–113. Doi: https://doi.org/10.4236/jfcmv.2016.43010.
Leocadio H., van der Geld C.W.M. & Passos J.C. (2019). Heat transfer coefficient during water jet cooling of high temperature steel. Technical contribution to the 11th International Rolling Conference. São Paulo, Brasil. Doi: https://doi.org/10.5151/9785-9785-32400.
Xuan Gao & Ri Li (2018). Spray impingement cooling: The state of the art. In: S.M. Sohel Murshed, Advanced Cooling Technologies and Applications. Doi: https://doi.org/10.5772/intechopen.80256
Sabariman S., Fang Y. & Specht E. (2016). Analytical and experimental describing the heat transfer in metal quenching with water sprays and jets. 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics. Costa del Sol, Malaga, Spain.
Chabičovský M. & Horský J. (2017). Factors influencing spray cooling of hot steel surfaces. In: Sborník conference METAL 2017. Ostrava: Tanger, 77–83.
Tomasik M., Lis S. & Korenko M. (2017). Modulacja szerokości impulsu PWM w sterowaniu automatycznym. Przegląd Elektrotechniczny, 93(12), 175–178. Doi: https://doi.org/10.15199/48.2017.12.44.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Piotr Stręk
This work is licensed under a Creative Commons Attribution 4.0 International License.