Bactericidal Properties of the Sol-gel Layer on Polymer Substrates in Medical Applications
DOI:
https://doi.org/10.7494/jcme.2024.8.4.59Keywords:
sol-gel method, biocidal properties, implants, inert polymers, siliconeAbstract
Polymeric biomaterials are a group of plastics used in medical devices, implants, and artificial organ components. In order to maintain the higher asepticity of the products, solutions based on the modification of the volume or surface of a plastic with biocidal agents, e.g. antibiotics, nanoparticles, are used. One of the methods used to impart biocidal properties to the material can be the use of layers applied by the sol-gel method. The aim of this study was to produce homogeneous and durable coatings on inert and hydrophobic silicone surfaces based on polysiloxane sols with biocidal activity against model bacteria: Gram negative (Escherichia coli, Klebsiella pneumoniae) and Gram positive (Staphylococcus aureus, Enterococcus faecalis). This paper presents results of investigations on a commercial biomedical silicone material (DEMED Sp. zoo) modified with eight sols; siloxane (TD), phenol-siloxane (FD), siloxane-aluminum (TD-Al), siloxane-titanium (TD-Ti), titanium (Ti), zinc (Zn), and TD and TD-Al sols modified with green tea extract (TD-GT, TD-Al-GT). The reference for the tested materials was unmodified silicone. In order to be prepared for coating, the siloxane samples were etched with hydrofluoric acid. Residual acid was removed from the silicone by washing and the substrates were then coated with sols by means of dip coating. The modified materials were then polymerized at 100°C for one week. The produced layered composites were subjected to microstructural, physicochemical, structural and microbiological analysis by contacting them with Gramm negative and Gramm positive bacteria. It was shown that the strongest biocidal properties were exhibited by samples modified with the sols based on - Zn, TD-Ti, Ti, TD-Al-GT and TD-GT.
Downloads
References
Chen X., Zhou J., Qian Y. & Zhao L. (2023). Antibacterial coatings on orthopedic implants. Materials Today Bio, 19, 100586. Doi: https://doi.org/10.1016/j.mtbio.2023.100586.
Yuan Z., He Y., Lin C., Liu & Cai K. (2021). Antibacterial surface design of biomedical titanium materials for orthopedic applications. Journal of Materials Science & Technology, 78, 51–67. Doi: https://doi.org/10.1016/j.jmst.2020.10.066.
Ahmadabadi H.Y., Yu K. & Kizhakkedathu J.N. (2020). Surface modification approaches for prevention of implant associated infections. Colloids and Surfaces B: Biointerfaces, 193, 111116. Doi: https://doi.org/10.1016/j.colsurfb.2020.111116.
Denstedt J.D., Wollin T.A. & Reid G. (1998). Biomaterials used in urology: Current issues of biocompatibility, infection, and encrustation. Journal of Endourology, 12(6), 493–500. Doi: https://doi.org/10.1089/end.1998.12.493.
Fernandes J.S., Gentile P., Pires R.A., Reis R.L. & Hatton P.V. (2017). Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomaterialia, 59, 2–11. Doi: https://doi.org/10.1016/j.actbio.2017.06.046.
Zhao C., Liu W., Zhu M., Wu C. & Zhu Y. (2022). Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioactive Materials, 18, 383–398. Doi: https://doi.org/10.1016/j.bioactmat.2022.02.010.
Mills J.P. & Marchaim D. (2021). Multidrug-resistant gram-negative bacteria. Infectious Disease Clinics of North America, 35(4), 969–994. Doi: https://doi.org/10.1016/j.idc.2021.08.001.
Filipović U., Dahmane R.G., Ghannouchi S., Zore A. & Bohinc K. (2020). Bacterial adhesion on orthopedic implants. Advances in Colloid and Interface Science, 283, 102228. Doi: https://doi.org/10.1016/j.cis.2020.102228.
Meier E.L. & Jang Y. (2023). Surface design strategies of polymeric biomedical implants for antibacterial properties. Current Opinion in Biomedical Engineering, 26, 100448. Doi: https://doi.org/10.1016/j.cobme.2023.100448.
Yang X., Yu Q., Gao W., Tang X., Yi H. & Tang X. (2022). The mechanism of metal-based antibacterial materials and the progress of food packaging applications: A review. Ceramics International,48(23), 34148–34168. Doi: https://doi.org/10.1016/j.ceramint.2022.08.249.
Li B., Thebault P., Labat B., Ladam G., Alt V., Rupp M., Brochausen C., Jantsch J., Ip M., Zhang N., Cheung W.-H., Leung S.Y.S., Wong R.M.Y. (2024). Implants coating strategies for antibacterial treatment in fracture and defect models: A systematic review of animal studies. Journal of Orthopaedic Translation, 45, 24–35. Doi: https://doi.org/10.1016/j.jot.2023.12.006.
Lam M., Migonney V. & Falentin-Daudre C. (2021). Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomaterialia, 121, 68–88. Doi: https://doi.org/10.1016/j.actbio.2020.11.020.
Roe D., Karandikar B., Bonn-Savage N., Gibbins B. & Roullet J.-B. (2008). Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. Journal of Antimicrobial Chemotherapy, 61(4), 869–876. Doi: https://doi.org/10.1093/jac/dkn034.
Martinez-Gutierrez F., Olive P.L., Banuelos A., Orrantia E., Nino N., Morales Sanchez E., Ruiz F., Bach H. & Av-Gay Y. (2010). Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6(5), 681–688. Doi: https://doi.org/10.1016/j.nano.2010.02.001.
Ramasamy M. & Lee J. (2016). Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Research International, 2016, 1–17. Doi: https://doi.org/10.1155/2016/1851242.
Yang L., Li L., Tu Q., Ren L., Zhang Y., Wang X., Zhang Z., Liu W. & Wang J. (2010). Photocatalyzed surface modification of poly(dimethylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility. Analytical Chemistry, 82(15), 6430–6439. Doi: https://doi.org/10.1021/ac100544x.
Silverio V., Canane P. A. G. & Cardoso S. (2019). Surface wettability and stability of chemically modified silicon, glass and polymeric surfaces via room temperature chemical vapor deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 570, 210–217. Doi: https://doi.org/10.1016/j.colsurfa.2019.03.032.
Martin J., Martinez J., Mehdi A. & Subra G. (2019). Silicone grafted bioactive peptides and their applications. Current Opinion in Chemical Biology, 52, 125–135. Doi: https://doi.org/10.1016/j.cbpa.2019.06.012.
Bračič M., Fras-Zemljič L., Pérez L., Kogej K., Stana-Kleinschek K., Kargl R. & Mohan T. (2017). Protein-repellent and antimicrobial nanoparticle coatings from hyaluronic acid and a lysine-derived biocompatible surfactant. Journal of Materials Chemistry B, 5(21), 3888–3897. Doi: https://doi.org/10.1039/C7TB00311K.
Yeaman M.R. & Yount N.Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 55(1), 27–55. Doi: https://doi.org/10.1124/pr.55.1.2.
Dimitriou M.D., Zhou Z., Yoo H.-S., Killops K.L., Finlay J.A., Cone G., Sundaram H.S., Lynd N.A., Barteau K.P., Campos L.M., Fischer D.A., Callow M.E., Callow J.A., Ober C.K., Hawker C.J. & Kramer E.J. (2011). A general approach to controlling the surface composition of poly(ethylene oxide)-based block copolymers for antifouling coatings. Langmuir, 27(22), 13762–13772. Doi: https://doi.org/10.1021/la202509m.
Bartels J.W., Imbesi P.M., Finlay J.A., Fidge C., Ma J., Seppala J.E., Nystron A.M., Mackay M.E., Callow J.A., Callow M.E. & Wooley K.L. (2011). Antibiofouling hybrid dendritic Boltorn/Star PEG Thiol-ene Cross-Linked Networks. ACS Applied Materials & Interfaces, 3(6), 2118–2129. Doi: https://doi.org/10.1021/am200337q.
Xu Q., Ji X., Tian J., Jin X. & Wu L. (2021). Inner surface hydrophilic modification of PVDF membrane with tea polyphenols/silica composite coating. Polymers, 13(23), 4186. Doi: https://doi.org/10.3390/polym13234186.
Cho J., Konopka K., Rożniatowski K., García-Lecina E., Shaffer M.S.P. & Boccaccini A.R. (2009). Characterisation of carbon nanotube films deposited by electrophoretic deposition. Carbon, 47(1), 58–67. Doi: https://doi.org/10.1016/j.carbon.2008.08.028.
Renzetti A., Betts J.W., Fukumoto K. & Rutherford R.N. (2020). Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure–activity relationships. Food & Function, 11(11), 9370–9396. Doi: https://doi.org/10.1039/D0FO02054K.
Deng J., Yang H., Capanoglu E., Cao H. & Xiao J. (2018). Technological aspects and stability of polyphenols. In: C.M. Galanakis (Ed.), Polyphenols: Properties, Recovery, and Applications, Amsterdam: Elsevier, 295–323. Doi: https://doi.org/10.1016/B978-0-12-813572-3.00009-9.
Wang H. (2000). Epimerisation of catechins in green tea infusions. Food Chemistry, 70( 3), 337–344. Doi: https://doi.org/10.1016/S0308-8146(00)00099-6.
Latos-Brozio M. & Masek A. (2020). Natural polymeric compound based on high thermal stability catechin from green tea. Biomolecules, 10(8), 1191. Doi: https://doi.org/10.3390/biom10081191.
Pasrija D. & Anandharamakrishnan C. (2015). Techniques for extraction of green tea polyphenols: a review. Food and Bioprocess Technology, 8(5), 935–950. Doi: https://doi.org/10.1007/s11947-015-1479-y.
Roman G.T., Hlaus T., Bass K.J., Seelhammer T.G. & Culbertson C.T. (2005). Sol-gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic mobilities and hydrophilic channel wall characteristics. Analytical Chemistry, 77(5), 1414–1422. Doi: https://doi.org/10.1021/ac048811z.
Roman G.T. & Culbertson C.T. (2006). Surface Engineering of poly(dimethylsiloxane) microfluidic devices using transition metal sol−gel chemistry. Langmuir, 22(9), 4445–4451. Doi: https://doi.org/10.1021/la053085w.
Girshevitz O., Nitzan Y. & Sukenik C.N. (2008). Solution-deposited amorphous titanium dioxide on silicone rubber: a conformal, crack-free antibacterial coating. Chemistry of Materials, 20(4), 1390–1396. Doi: https://doi.org/10.1021/cm702209r.
Torbicz W., Błażewicz S. & Marciniak J. (2016). Biomateriały. Warszawa: Akademicka Oficyna Wydawnicza Exit.
Borycki J., Okulska-Bożek M.-M. & Prot T. (2002). Polyimides as aligning layers in LCD technology. In: M.-M. Okulska-Bożek,
M. Wilczek (Eds.), Polymers of Special Applications, Radom: Politechnika Radomska, 20–27.
Oznaczanie lekowrażliwości metodą dyfuzyjno-krążkową (EUCAST) Retrieved from: https://korld.nil.gov.pl/wp-content/uploads/2020/09/2020_v_8_Metoda_dyf-kraz_strona.pdf [accessed: 5.01.2022].
Thermo Fisher Scientific Inc., ‘LIVE/DEADTM BacLightTM Bacterial Viability Kits’. Retrieved from: https://www.thermofisher.com/order/catalog/product/L13152 [accessed: 21.06.2024].
Kopani M., Mikula M., Kosnac D., Kovac J., Trnka M., Gregus J., Jerigova M., Jergel M., Vavrinsky E., Bacova S., Zitto P., Polak S. & Pincik E. (2020). Effect of etching time in hydrofluoric acid on the structure and morphology of n-type porous silicon. Applied Surface Science, 532, 147463. Doi: https://doi.org/10.1016/j.apsusc.2020.147463.
Zhou H., Yang S., Wei D., Liang C., Yang Q., Yang H., Wang D., Li M. & Yang L.. (2021). Development of hydrofluoric acid-cleaned silicon nitride implants for periprosthetic infection eradication and bone regeneration enhancement. Materials Science and Engineering: C, 127, 112241. Doi: https://doi.org/10.1016/j.msec.2021.112241.
Huo C. (2024). Controlled fabrication of upright and inverted pyramid arrays of silicon via the interaction of copper ions and oxidants in hydrofluoric acid. Thin Solid Films, 798, 140377. Doi: https://doi.org/10.1016/j.tsf.2024.140377.
Wang G., Li J., Lv K., Zhan W., Ding X., Yang G., Liu X. & Jiang X. (2016). Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Scientific Reports, 6(1), 31769. Doi: https://doi.org/10.1038/srep31769.
Nguyen-Tri P., Nguyen Tran H., Ouellet Plamondon C., Tuduri L., Vo D.-V. N., Nanda S., Mishra A., Chao H.-P. & Bajpai A.K. (2019). Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Progress in Organic Coatings, 132, 235–256. Doi: https://doi.org/10.1016/j.porgcoat.2019.03.042.
Leão A.G., Soares B.G., Silva A.A., Pereira E.C.L., Souto L.F.C. & Ribeiro A.C. (2023). Transparent and superhydrophobic room temperature vulcanized (RTV) polysiloxane coatings loaded with different hydrophobic silica nanoparticles with self-cleaning characteristics. Surface and Coatings Technology, 462, 129479. Doi: https://doi.org/10.1016/j.surfcoat.2023.129479.
Salih S.I., Oleiwi J.K. & Ali H.M. (2018). Study the mechanical properties of polymeric blends (SR/PMMA) using for maxillofacial prosthesis application. IOP Conference Series: Materials Science and Engineering, 454, 012086. Doi: https:.//doi.org/10.1088/1757-899X/454/1/012086.
Launer P.J. & Arkles B. (2013). Infrared analysis of organosilicon compounds: spectra-structure correlations. In: B. Arkles, G.L. Larson (Eds.), Silicon Compounds: Silanes & Silicones, third Edition, Gelest Inc., Morrisville, PA, 175–178.
Luo Q., Zhang J.-R., Li H.-B., Wu D.-T., Geng F., Corke H., Wei X.-L. & Gan R.-Y. (2020). Green extraction of antioxidant polyphenols from green tea (Camellia sinensis). Antioxidants, 9(9), 785. Doi: https://doi.org/10.3390/antiox9090785.
Wongsa P., Phatikulrungsun P. & Prathumthong S. (2022). FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions. Scientific Reports, 12(1), 6631. Doi: https://doi.org/10.1038/s41598-022-10669-z.
El Fadl F.I.A., Hegazy D.E., Maziad N.A. & Ghobashy M.M. (2023). Effect of nano-metal oxides (TiO2, MgO, CaO, and ZnO) on antibacterial property of (PEO/PEC-co-AAm) hydrogel synthesized by gamma irradiation. International Journal of Biological Macromolecules, 250, 126248. Doi: https://doi.org/10.1016/j.ijbiomac.2023.126248.
Jebeli S.J., Aghdam R.M., Najjari A. & Soltani R. (2024). Evaluation of bioactivity and antibacterial properties of Ti6Al4V-based green biocomposite implant encompassing TiO2 nanotube arrays and garlic extract. Heliyon, 10(7), e28588. Doi: https://doi.org/10.1016/j.heliyon.2024.e28588.
Zhu X., Li. , Cai L., Wu Y., Wang J., Xu S., Wang S., Wang H., Wang D. & Chen J. (2024). ZnO nanoparticles encapsulated cellulose-lignin film for antibacterial and biodegradable food packaging. iScience, 27(7), 110008. Doi: https://doi.org/10.1016/j.isci.2024.110008.
Li M., Li Q., Yang J., Niinomi M. & Nakano T. (2024). Preparation and antibacterial activity of Zn coating on pure Ti with enhanced adhesion. Materials Today Communications, 38, 108149. Doi: https://doi.org/10.1016/j.mtcomm.2024.108149.
Cho Y.-S., Schiller N. L. & Oh K.-H. (2008). Antibacterial effects of green tea polyphenols on clinical isolates of methicillin-resistant Staphylococcus aureus. Current Microbiology, 57(6), 542–546. Doi: https://doi.org/10.1007/s00284-008-9239-0.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Paulina Armatys, Elżbieta Długoń, Wojciech Smółka, Robert Sobota, Aneta Frączek-Szczypta, Ewa Stodolak-Zych, Jarosław Markowski
This work is licensed under a Creative Commons Attribution 4.0 International License.