An Analysis of the Prospects of the Use of Magnetic Water Treatment in Foundry Engineering
DOI:
https://doi.org/10.7494/jcme.2023.7.2.22Abstract
Scientists are currently focused on creating technologies that produce positive results without affecting the environment. One such technology is magnetic water treatment. In this paper, an analytical review of publications devoted to the application of magnetic treatment of water in various branches of engineering, agriculture, and medicine is carried out. Current views on the structure of water molecules, as well as the theories explaining the influence of the magnetic treatment of water on its properties, are reviewed. The results of studies of the influence of water treated by a magnetic field on the properties of molding sand are analyzed, including those in which the authors of the article took part. It is shown that the magnetic treatment of still water can increase the green strength of the molding sand containing this water from 0.035 to 0.052 MPa, and that of water in motion to 0.075 MPa. Thanks to this, the amount of binder in the molding sand can be reduced. It is concluded that the use of magnetically treated water in foundries is promising.
Downloads
References
Piccardi G. (1962). The Chemical Basis Medical Climatology. Springfield: Thomas.
Vermeiren T.I.S. (1957). Patent France No. 1145070 C02. Lille, Ministѐre de L՛industrie et du Commerce, Service de la Propriété Industrielle.
Martynova O.I., Kopylov A.S. & Ochkov V.F. (1978). Mechanism and scale formation control in MSF (Multi Stage Flash Desalination) plant using an electromagnetic apparatus. Proceedings of 6th International Symposium Flash Water from the Sea, September 17–22. Madrid, 240–251 [s.n.]. http://twt.mpei.ac.ru/ochkov/Grand_Canaria/index.htm [accessed: 21.03.2023].
Martynova O.I., Kopylov A S., Tebenikhin Ye.F. & Ochkov V.F. (1979). K mekhanizmu vliyaniya magnitnoy obrabotki vody na protsessy nakipeobrazovaniya i korrozii. Teploenergetika, 26(6), 67–69 [Мартынова О.И., Копылов А.С., Тебенихин Е.Ф. & Чков В.Ф. (1979). К механизму влияния магнитной обработки воды на процессы накипеобразования и коррозии, Теплоэнергетика, 26(6), 67–69. http://twt.mpei.ac.ru/ochkov/MO/art_4_M_K_T_O.htm [accessed: 21.03.2023].
Kozic V., Hamler A., Ban I. & Lipus L.C. (2010). Magnetic water treatment for scale control in heating and alkaline conditions. Desalination and Water Treatment, 22(1–3), 65–71. Doi: https://doi.org/10.5004/dwt.2010.1549.
Gabrielli C., Jaouhari R., Maurin G. & Keddam M. (2001). Mag-netic water treatment for scale prevention. Water Research, 35(13), 3249–3259. Doi: https://doi.org/10.1016/S0043-1354(01)00010-0.
Lin L., Jiang W., Xu X. & Xu P. (2020). A critical review of the application of electromagnetic fields for scaling control in water systems: mechanisms, characterization, and operation. Clean Water, 25, 1–19. https://www.nature.com/articles/s41545-020-0071-9 [accessed: 21.03.2023].
Mosin O. & Ignatov I. (2015). Practical implementation of magnetic water treatment to eliminate scaling salts. Journal of Health, Medicine and Nursing, 10, 111–125. https://iiste.org/Journals/index.php/JHMN/article/view/19684.
Dalas E. & Koutsoukos P.G. (1989). The effect of magnetic fields on calcium carbonate scale formation. Journal of Crystal Growth, 96(4), 802–806. Doi: https://doi.org/10.1016/0022-0248(89)90640-4.
Alabi A., Chiesa M., Garlisi C. & Palmisano G. (2015). Advances in anti-scale magnetic water treatment. Environmental Science: Water Research & Technology, 4, 408–425. Doi: https://doi.org/10.1039/C5EW00052A.
Baker J.S. & Judd S.J. (1996). Magnetic amelioration of scale formation. Water Research, 30(2), 247–260. Doi: https://doi.org/10.1016/0043-1354(95)00184-0.
Faris A.S., Al-Mahaidi R. & Jadooe A. (2014). Implementation of magnetized water to improve the properties of concrete. International Journal of Civil Engineering and Technology, 5(10), 43–57. http://hdl.handle.net/1959.3/391689.
Narmatha M., Arulraj P. & Bari J.A. (2021). Effect of magnetic water treatment for mixing and curing on structural concrete. Materials Today: Proceedings, 37(2), 671–676. Doi: https://doi.org/10.1016/j.matpr.2020.05.633.
Su N., Wu Y.-H. & Mar C.-Y. (2000). Effect of magnetic water on the engineering properties of concrete granulated blast-furnace slag. Cement and Concreate Research, 30(4), 599–605. Doi: https://doi.org/10.1016/S0008-8846(00)00215-5.
Malathy R., Narayanan K. & Mayakrishnan P. (2022). Performance of prestressed concrete beams using magnetic water for concrete mixing. Journal of Adhesion Science and Technology, 36(6), 666–684. Doi: https://doi.org/10.1080/01694243.2021.1936383.
Ramalingam M., Narayanan K., Masilamani A., Kathirvel P., Murali G. & Vatin N.I. (2022). Influence of magnetic water on concrete properties with different magnetic field exposure times. Materials, 15(12), 4291. Doi: https://doi.org/10.3390/ma15124291.
Malathy R., Narayanan K. & Baranidharan S. (2017). Effect of magnetic water on mixing and curing of M25 grade concrete. International Journal of Chemical Technology Research, 10(11), 131–139.
Yusuf K.O., Tokosi R.O. & Raji M. (2022). Effect of magnetic treatment of irrigation water on germination, growth, yield and popping-quality of popcorn under deficit irrigation. Notulae Scientia Biologicae, 14(3), 11323. Doi: https://doi.org/10.55779/nsb14311323.
Bogatin J., Bondarenko N.P., Gak E.Z., Rokhinson E.E. & Ananyev I.P. (1999). Magnetic treatment of irrigation water: Experimental results and application conditions. Environmental Science Technology, 33(8), 1280–1285. Doi: https://doi.org/10.1021/es980172k.
Maheshwari B.L. & Grewal H.S. (2009). Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Journal of Agricultural Water Management, 96(8), 1229–1236. Doi: https://doi.org/10.1016/j.agwat.2009.03.016.
Yadollahpour A., Rashidi S., Rezaee Z. & Jalilifar M. (2014). Magnetic water treatment in environmental management. A review of the recent advances and future perspective. Current World Environments, 9(3), 1008–1016. Doi: http://dx.doi.org/10.12944CWE.9.3.56.
Szatyłowicz E. & Skoczko I. (2015). Możliwości wykorzystania pola magnetycznego w inżynierii środowiska. In: I. Skoczko, J. Piekutin, E. Olszańska, E. Markiewicz (red.), Inżynieria Środowiska – Młodym Okiem. Tom 13: Ekoinżynieria. Białystok: Oficyna Wydawnicza Politechniki Białostockiej, 331–354. https://www.researchgate.net/publication/313293278.
Klassen V.I. (1973). Voda i magnit. Moskva: Nauka [Классен В.И. (1973). Вода и mагнит. Москва: Наука].
Kartashev V.T., Pogosbekyan Yu.M. & Yefremov A.L. (1975). Magnitnaya i elektricheskaya obrabotka peschano-glinistykh smesey. Liteynoye Proizvodstvo, 11, 17–18 [Карташев В.Т., Погосбекян Ю.М., Ефремов А.Л. (1975). Магнитная и электрическая обработка песчано-глинистых смесей. Литейное Производство, 11, 17–18].
Tokarev A.I. & Belyakov A.I. (1973). Obrabotka svyazuyushchikh magnitnym polem i elektricheskim tokom. Liteynoye Proizvodstvo, 3, 30–31 [Токарев А.И., Беляков А.И. (1973). Обработка связующих магнитным полем и электрическим током. Литейное Производство, 3, 30–31].
Bobrovskikh I.Ye., Yanush Ye.I., Cherkes Z.A. & Nenakhov N.A. (1975). Issledovaniye vliyaniya skorosti prokhozhdeniya suspenzii cherez namagnichivayushchiy apparat na fiziko-mekhanicheskiye svoystva formovochnoy smesi. In: P.V. Chernogorov, Yu.P. Vasin, Progressivnyye metody izgotovleniya liteynykh form. Chelyabinsk: Chelyabinskoye izdatel’stvo, 274–276 [Бобровских И.Е., Януш Е.И., Черкес З.А., Ненахов Н.А. (1975). Исследование влияния скорости прохождения суспензии через намагничивающий аппарат на физико-механические свойства формовочной смеси. В книге: Черногоров П.В., Васин Ю.П., Прогрессивные методы изготовления литейных форм, 274–276. Челябинск: Челябинское издательство].
Kochkina T., Chumakova A., Vedenina T., Uvarova V. & Finogenova L. (1970). Omagnichennaya voda kak faktor povysheniya prochnosti peschano-tsementnykh formovochnykh smesey. In: A. Chumakova, Progressivnyye metody i protsessy v liteynom proizvodstve. Volgograd: Izdatel’stvo Nizhnevolzhskogo TSBTI, 22–23 [Кочкина Т., Чумакова А., Веденина Т., Уварова В., Финогенова Л. (1970). Омагниченная вода как фактор повышения прочности песчано-цементных формовочных смесей. В книге: А. Чумакова, Прогрессивные методы и процессы в литейном производстве. Волгоград: Издательство Нижневолжского ЦБТИ, 22–23].
Dan L.A., Trofimova L.A., Shepilov V.A. & Dan Ye.L. (2012). Povysheniye prochnostnykh svoystv syrykh peschano-glinistykh formovochnykh smesey putem elektromagnitnoy obrabotki vody. Vestnik PGTU, 24, 143–147 [Дан Л.А., Трофимова Л.А., Шепилов В.А., Дан Е.Л. (2012). Повышение прочностных свойств сырых песчано-глинистых формовочных смесей путем электромагнитной обработки воды. Вестник ПГТУ, 24, 143–147].
Ochkov V.F. (2011). Voda i magnit. Vodoochistka, Vodopodgotovka, Vodosnabzheniye, 10, 36–48 [Очков В.Ф. (2011). Вода и магнит. Водоочистка, Водоподготовка, Водоснабжение, 10, 36–48. Doi: http://twt.mpei.ac.ru/ochkov/MO/BBB.html [accessed: 21.03.2023].
Bernal D.J. & Fowler R.H. (1933). A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. The Journal of Chemical Physics, 1, 515–548.
Ramsay W. & Shields J. (1893). The molecular complexity of liquids. Journal of the Chemical Society, 63, 1089–1109.
Sutherland W. (1900). The molecular construction of water. Philosophical Magazine, 50, 460–489.
Stewart G.W. (1930). X-Ray Diffraction in liquids. Reviews of Modern Phyisics, 2, 116–122.
Mecke R. (1933). Des Rotationsschwingungsspektrum des Wasserdampfes. Zeitschrift für Physik, 81, 313–331.
Yel’yashevich M.A. (1938). Vrashchatel’no-kolebatel’naya energiya mnogoatomnykh molekul. Trudy Gosudarstvennogo Opticheskogo Instituta, 12(106), 39–40 [Ельяшевич М.А. (1938). Вращательно-колебательная энергия многоатомных молекул. Труды Государственного Оптического Института, 12(106), 39–40].
Magat M. (1936). Recherches sur le spectre Raman et la constitution de lʾeau liquid. Annales de Physique, 11(6), 108–193.
Bjerrum N. (1952). Structure and Properties of Ice. Science, 115, 385–390.
Pauling L. (1935). The structure and entropy of ice and other crystal with some randomness of atomic arrangement. Journal of the American Chemical Society, 57, 2680–2684.
Lennard-Jones J. & Pople J.A. (1950). The molecular orbital theory of chemical valency. IV. The significance of equivalent orbitals. Proceedings of the Royal Society A, 202, 166–180. Doi: https://doi.org/https://doi.org/10.1098/rspa.1950.0092.
Pang X. (2006). The conductivity properties of protons in ice and mechanism of magnetization of liquid water. The European Physical Journal B, 49, 5–23. Doi: https://doi.org/10.1140/epjb/e2006-00020-6.
Pang X.F. & Deng B. (2008). Investigation of changes in properties of water under the action of a magnetic field. Science China Physics, Mechanics & Astronomy, 51, 1621–1632. Doi: https://doi.org/10.1007/s11433-008-0182-7.
Amiri M.C. & Dadkhah A.A. (2006). On reduction in the surface tension of water due to magnetic treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 278(1–3), 252–255. https://doi:10.1016/j.colsurfa.2005.12.046.
Premkaisorn P. & Wasupongpun W. (2020). Magnetic field effect on physicochemical properties of water. RMUTP Research Journal, 14(2), 1–17.
Deng B. & Pang X. (2007). Variations of optic properties of water under action of static magnetic field. Chinese Science Bulletin, 52, 3179–3182. Doi: https://doi:10.1007/s11434-007-0430-7.
Krestov G.A. (1984). Termodinamika ionnykh protsessov v ras-tvorakh. Leningrad: Nauka [Крестов Г.А. (1984). Термодинамика ионных процессов в растворах. Ленинград: Наука].
Martynova O.I., Gusev B.T. & Leont’yev Ye.A. (1969). O mekhanizme vliyaniya magnitnogo polya na vodnyye rastvory soley. Uspekhi Fizicheskikh Nauk, 98, 25–31 [Мартынова О.И., Гусев Б.Т., Леонтьев Е.А. (1969). О механизме влияния магнитного поля на водные растворы солей. Успехи Физических Наук, 98, 25–31].
Kronenberg K. (1985) Experimental evidence for the effects of magnetic fields on moving water. IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers), 21(5), 2059–2061.
Ignatov I.I. & Mosin O.V. (2013). Structural mathematical models describing water clusters. Nanotechnology Research and Practice, 3(11), 72–87. Doi: https://doi.org/10.13187/ejnr.2014.3.141.
Boldin A.N., Davydov N.I. & Zhukovskiy S.S. (2006). Liteynyye formovochnyye materialy. Formovochnyye, sterzhnevyye smesi i pokrytiya. Spravochnik. Moskva: Mashinostroyeniye [Болдин А.Н., Давыдов Н.И., Жуковский С.С. (2006). Литейные формовочные материалы. Формовочные, стержневые смеси и покрытия. Справочник. Москва: Машиностроение].
Gorbunov N.I. (1957). Pochvennyye kolloidy. Moskva: Izdatel’stvo Akademii Nauk SSSR [Горбунов Н.И. (1957). Почвенные коллоиды. Москва: Издательство Академии Наук СССР].
Tolstoy N.A. (1967). Zhestkiy elektricheskiy dipol’nyy moment kolloidnykh chastits. In: B.V. Deryagin (red.), Issledovaniya v oblasti poverkhnostnykh sil. Moskva: Nauka, 56–78 [Толстой Н.А. (1967). Жесткий электрический дипольный момент коллоидных частиц. В книге: Б.В. Дерягин (Ред.), Исследования в области поверхностных сил. Москва: Наука, 56–78].
Illarionov I.Ye. (2011). Teoreticheskiye osnovy formirovaniya fiziko-mekhanicheskikh svoystv peschano-glinistykh smesey. Trudy Nizhegorodskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. R.Ye. Alekseyeva, 1(86), 233–241 [Илларионов И.Е. (2011). Теоретические основы формирования физико-механических свойств песчано-глинистых смесей. Труды Нижегородского Государственного Технического Университета им. Р.Е. Алексеева, 1(86), 233–242].
Vasin Yu.B., Semenchenko I.B., Bortnikov M.M., Gorlov V.V. & Vasina Z.M. (1969). Progressivnaya tekhnologiya liteynogo proizvodstva. Gor’kiy: Gor’kovskoye knizhnoye izdatel’stvo [Васин Ю.Б., Семенченко И.Б., Бортников М.М., Горлов В.В., Васина З.М. (1969). Прогрессивная технология литейного производства. Горький: Горьковское книжное издательство].
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Leonid Dan, Larysa Trofimova
This work is licensed under a Creative Commons Attribution 4.0 International License.