An IT System for the Remote Burden Optimization of Foundry Furnaces

Authors

  • Eugeniusz Ziółkowski AGH University of Science and Technology

DOI:

https://doi.org/10.7494/jcme.2021.5.3.36

Abstract

The burden calculations for foundry furnaces are one of the most important steps in preparing the production of liquid casting alloys. These calculations, due to the usually large number of input materials and chemical elements, are realized by numerical methods. These methods are implemented in some spreadsheets, universal mathematical programs or in specialized programs for foundry engineering. The paper describes a computerized system for remote calculations of optimal burden. The technological, economic, and organizational features of implementing IT system have been presented, also taking into account its safety of use.

Downloads

Download data is not yet available.

References

Ziółkowski E. (2007). Algorithms of furnace charge burden optimisation in foundries. Archives of Metallurgy and Materials, 52(3), 487–495.

Ziółkowski E. (2013). Algorithm for burden calculation for foundry furnaces using charge materials with an uncertain composition. Archives of Metallurgy and Materials, 58(3), 887–889.

Ziółkowski E. (2017). Burden optimisation of lump charge materials for foundry furnaces. Archives of Metallurgy and Materials, 62(4), 2217–2221. Doi: https://doi.org/10.1515/amm-2017-0327.

Ziółkowski E. & Schmalenberg K. (2019). Determination of the charge materials range in multistage charge burden optimization for foundry furnaces. Journal of Materials Engineering and Performance, 28(7), 4012–4017. Doi: https://doi.org/10.1007/s11665-019-04144-6.

Define and solve a problem by using Solver. Retrieved from: https://support.microsoft.com/en-us/office/define-and-solve-a-problem-by-using-solver-5d1a388f-079d-43ac-a7eb-f63e45925040 [21.03.2021].

Solver. LibreOffice 6.1 Help. Retrieved from: https://help.libreoffice.org/6.1/en-US/text/scalc/01/solver.html [18.05.2021].

Wolfram Mathematica. Retrieved from: https://www.wolfram.com [21.03.2021].

MATLAB Capabilities. Retrieved from: https://nl.mathworks.com/products/matlab.html [10.02.2021].

RAD Studio 10.4.2. Retrieved from: https://www.embarcadero.com/products/rad-studio [7.04.2021].

DataSnap Overview and Architecture. Retrieved from: http://docwiki.embarcadero.com/RADStudio/Sydney/en/DataSnap_Overview_and_Architecture [11.03.2021].

Sentinel HASP. Award-winning, out-of-the-box Software Licensing Security Solution. Retrieved from: https://cpl.thalesgroup.com/software-monetization/all-products/sentinel-hasp [19.02.2021].

Major Components of the Vendor Suite. Retrieved from: https://docs.sentinel.thalesgroup.com/ldk/LDKdocs/SPNL/LDK_SLnP_Guide/Familiarizing/Vendor_suite_components.htm [26.04.2021].

Downloads

Published

2021-07-27

How to Cite

Ziółkowski, E. (2021). An IT System for the Remote Burden Optimization of Foundry Furnaces. Journal of Casting &Amp; Materials Engineering, 5(3), 36–39. https://doi.org/10.7494/jcme.2021.5.3.36

Issue

Section

Articles