An Analysis of the Features of Cast Composite Materials Based on Light Alloys Reinforced by Particles

Authors

  • Olena Dan AGH University of Science and Technology, Faculty of Foundry Engineering, al. A. Mickiewicza 30, 30-059 Krakow, Poland/ MDPI Branch Office Kraków, al. Jana Pawła II 43a, 31-864 Krakow, Poland

DOI:

https://doi.org/10.7494/jcme.2022.6.1.8

Abstract

Light alloys are widely used in industry and everyday life due to their high physical and mechanical properties, wear and corrosion resistance, as well as low cost. In this regard, the use of light alloys as a basis for composite materials is both justified and expedient. The potential of these materials has not been fully used to this day, despite the growing interest in metal matrix composites and extensive investigations aimed at the development of production technology and the introduction of advanced systems based on light matrices. The article presents a short review of the analysis of the main components of the technology of cast composite materials based on light alloys of aluminum and magnesium reinforced by particles. Particular attention is paid to the choice of the matrix alloy, the type, size and amount of reinforcing particles introduced into it, as well as the thermal-time and kinetic parameters of the process.

Downloads

Download data is not yet available.

Author Biography

Olena Dan, AGH University of Science and Technology, Faculty of Foundry Engineering, al. A. Mickiewicza 30, 30-059 Krakow, Poland/ MDPI Branch Office Kraków, al. Jana Pawła II 43a, 31-864 Krakow, Poland

Mariupol, Donetsk region

References

Mavhungu S.T., Akinlabi E.T., Onitiri, M.A. & Varachia F.M. (2017). Aluminum matrix composites for industrial use: advances and trends. Procedia Manufacturing, 7, 178–182. Doi: https://doi.org/10.1016/j.promfg.2016.12.045.

Sharma A.K., Bhandari R., Aherwar A., Rimašauskienė R. & Pinca-Bretotean C. (2020). A study of advancement in application opportunities of aluminum metal matrix composites. Materials Today: Proceedings, 26, 2419–2424. Doi: https://doi.org/10.1016/j.matpr.2020.02.516.

Kalisz D. & Arustmian A. (2020). Multimetal Stahl 1018 Composite – Structure and Strength Properties. Archives of Foundry Engineering, 11/4, 77–82. Doi: https://doi.org/10.24425/afe.2020.133351.

Rohatgi P. (1991). Cast aluminum-matrix composites for automotive applications. JOM Journal of the Minerals, Metals and Materials Society, 43(4), 10–15.

Sharma A.K., Bhandari R., Aherwar A. & Pinca-Bretotean C. (2020). A study of fabrication methods of aluminum based composites focused on stir casting process. Materials Today: Proceedings, 27, 1608–1612. Doi: https://doi.org/10.1016/j.matpr.2020.03.316.

Lelito J., Żak P.L., Gracz B., Szucki M., Kalisz D., Malinowski P., Suchy J.S. & Krajewski W.K. (2015). Determination of substrate log-normal distribution in the AZ91/SICP composite. Metalurgija, 54(1), 204–206.

Saleh B., Jiang J., Fathi R., Xu Q., Wang L. & Ma A. (2020). Study of the microstructure and mechanical characteristics of AZ91-SiCp composites fabricated by stir casting. Archives of Civil and Mechanical Engineering, 20, 1–14. Doi: https://doi.org/10.1007/s43452-020-00071-9.

Chernyshova T.A., Kobeleva L.I. & Bolotova L.K. (2001). Diskretno armirovannyye kompozitsionnyye materialy s matritsami iz alyuminiyevykh splavov i ikh tribologicheskiye svoystva. Metally, 6, 85–98 [Чернышова Т.А., Кобелева Л.И. & Болотова Л.К. (2001). Дискретно армированные композиционные материалы с матрицами из алюминиевых сплавов и их трибологические свойства. Металлы, 6, 85–98].

Boczkowska A. & Krzesiński G. (2016). Kompozyty i techniki ich wytwarzania. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.

Boczkowska A., Kapuściński J., Lindemann Z., Witemberg-Perzyk D. & Wojciechowski S. (2003). Kompozyty. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.

Rohatgi P.K., Kumar P.A., Chelliah N.M. & Rajan T.P.D. (2020). Solidification processing of cast metal matrix composites over the last 50 years and opportunities for the future. JOM Journal of the Minerals, Metals and Materials Society, 72, 2912–2926. Doi: https://doi.org/10.1007/s11837-020-04253-x.

Morgan P. (2005). Carbon Fibers and their Composites. Boca Raton: CRC Press Taylor and Francis Group.

Matthews F.L. & Rawlings R.D. (1999). Composite Materials: Engineering and Science. Sawston: Woodhead Publishing. Doi:https://doi.org/10.1016/C2013-0-17714-8.

Żak P. L., Kalisz D. & Rączkowski G. (2017). Numerical Model of SiC Particle Interaction with Solidification Front in AZ91/(SiCp) Composite. Archives of Metallurgy and Materials, 62 (3), 1625–1628. Doi: https://doi.org/10.1515/amm-2017-0248.

Kondratenko A.N. & Golubkova T.A. (2009). Perspektivnyye tekhnologii polucheniya i oblasti primeneniya nanostrukturnykh metallomatrichnykh kompozitov. Konstruktsii iz kompozitsionnykh materialov, 1, 24–25 [Кондратенко А.Н. & Голубкова Т.А. (2009). Перспективные технологии получения и области применения наноструктурных металломатричных композитов. Конструкции из композиционных материалов, 1, 24–25].

Gul’bin V.N. & Kolpakov N.S. (2014). Oblegchennyye radiatsionno-zashchitnyye kompozity. Naukoyemkiye tekhnologii, 3 (15), 4–16 [Гульбин В.Н. & Колпаков Н.С. (2014). Облегченные радиационно-защитные композиты. Наукоемкие технологии, 3 (15), 4–16].

Kaczmar J.W., Pietrzak K. & Włosiński W. (2000). The production and application of metal matrix composite materials. Journal of materials processing technology, 106(1–3), 58–67. Doi: https://doi.org/10.1016/S0924-0136(00)00639-7.

Bhoi N.K., Singh H. & Pratap S. (2019). Developments in the aluminum metal matrix composites reinforced by micro/nano particles – A review. Journal of Composite Materials, 54, 813–833. Doi: https://doi.org/10.1177/0021998319865307.

Maziarz W., Wójcik A., Bobrowski P., Bigos A., Szymański Ł., Kurtyka P., Rylko N. & Olejnik E. (2019). SEM and TEM studies on in-situ cast Al-TiC composites. Materials Transactions, 60(5), 714–717. Doi: https://doi.org/10.2320/matertrans.MC201806.

Luong D.D., Gupta N., Daoud A. & Rohatgi P.K. (2011). High strain rate compressive characterization of aluminum alloy/fly ash cenosphere composites. JOM Journal of the Minerals, Metals and Materials Society, 63(2), 53–56. Doi: https://doi.org/10.1007/s11837-011-0029-y.

Omrani E., Moghadam A.D., Algazzar M., Menezes P.L. & Rohatgi P.K.

(2016). Effect of graphite particles on improving tribological properties Al-16Si-5Ni-5Graphite self-lubricating composite under fully flooded and starved lubrication conditions for transportation applications. The International Journal of Advanced Manufacturing Technology, 87(1), 929–939. Doi: https://doi.org/10.1007/s00170-016-8531-6.

Pechnikov A.A., Toleshuly A. & Meshcheryakov Ye.G. (2014). Lityye kompozitsionnyye izdeliya s alyuminiyevoy matritsey. Izvestiya MGTU “MAMI”, 1(19/2), 42–44 [Печников А.А., Толешулы А. & Мещеряков Е.Г. (2014). Литые композиционные изделия

с алюминиевой матрицей. Известия МГТУ “МАМИ”, 1 (19/2), 42–44].

Narayan R. & Rohatgi P.K. (1981). Damping capacity, resistivity, thermal expansion and machinability of aluminium alloy-mica composites. Journal of Materials Science, 16(11), 3025–3032.

Baradeswaran A. & Perumal A.E. (2013). Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Composites Part B: Engineering, 54, 146–152. Doi: https://doi.org/10.1016/j.compositesb.2013.05.012.

Bhushan R.K., Kumar S. & Das S. (2013). Fabrication and characterization of 7075 Al alloy reinforced with SiC particulates. The International Journal of Advanced Manufacturing Technology,65(5–8), 611–624. Doi: https://doi.org/10.1007/s00170-012-4200-6.

Wojcik A., Olejnik E., Bigos A., Chulist R., Bobrowski P., Kurtyka P.,

Tarasek A., Rylko N., Szymanski L. & Maziarz W. (2020). Microstructural characterization and mechanical properties of in situ cast nanocomposites Al/TiC type. Journal of Materials Research and Technology, 9(6), 12707–12715. Doi: https://doi.org/10.1016/j.jmrt.2020.09.012.

Ye T., Xu Y. & Ren J. (2019). Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite. Materials Science and Engineering: A, 753, 146–155. Doi: https://doi.org/10.1016/j.msea.2019.03.037.

Venkateshwar Reddy P., Suresh Kumar G., Satish Kumar V. & Veerabhadra Reddy B. (2020). Effect of Substituting SiC in Varying Proportions for TiC in Al-5052/TiC/SiC Hybrid MMC. Journal of Bio- and Tribo-Corrosion, 6(1), 1–11. Doi: https://doi.org/10.1007/s40735-019-0320-y.

Ferguson J.B., Aguirre I., Lopez H., Schultz B.F., Cho K. & Rohatgi P.K. (2014). Tensile properties of reactive stir-mixed and squeeze cast Al/CuOnp-based metal matrix nanocomposites. Materials Science and Engineering: A, 611, 326–332. Doi: https://doi.org/10.1016/j.msea.2014.06.008.

Rohatgi P.K., Menezes P.L., Mazzei T. & Lovell M.R. (2011). Tribological Behavior of Aluminum Micro- and Nano-Composites. International Journal of Aerospace Innovations, 3(3), 153–162.

Reddy M.P., Shakoor R.A., Parande G., Manakari V., Ubaid F., Mohamed A.M.A. & Gupta M. (2017). Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Progress in Natural Science: Materials International, 27(5), 606–614. Doi: https://doi.org/10.1016/j.pnsc.2017.08.015.

Amouri K., Kazemi S., Momeni A. & Kazazi M. (2016). Microstructure and mechanical properties of Al-nano/micro SiC composites produced by stir casting technique. Materials Science and Engineering: A, 674, 569–578. Doi: https://doi.org/10.1016/j.msea.2016.08.027.

Huang S. & Abbas A. (2020). Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting. Journal of Alloys and Compounds, 817, 153321. Doi: https://doi.org/10.1016/j.jallcom.2019.153321.

Mohammadi H., Emamy M. & Hamnabard Z. (2020). The statistical analysis of tensile and compression properties of the as-cast AZ91-X% B4C composites. International Journal of Metalcasting, 14 (2), 505–517. Doi: https://doi.org/10.1007/s40962-019-00377-2.

Tang X. & Dolman K.F. (2014). Patent No. 2934084. Quebec, Canadian Intellectual Property Office.

Chernysheva T.A., Kurganova Yu.A., Kobeleva L.I., Bolotova L.K., Kalashnikov I.Ye. & Katin I.V. (2007). Kompozitsionnyye materialy s matritsey iz alyuminiyevykh splavov, uprochnennykh chastitsami, dlya par treniya skol’zheniya. Pokrytiya i materialy spetsial’nogo naznacheniya, 3, 38–49 [Чернышева Т.А., Курганова Ю.А., Кобелева Л.И., Болотова Л.К., Калашников И.Е. & Катин И.В. (2007). Композиционные материалы с матрицей из алюминиевых сплавов, упрочненных частицами, для пар трения скольжения. Покрытия и материалы специального назначения, 3, 38–49].

Vasil’yev V.V. (1990). Kompozitsionnyye materialy. Spravochnik. Moskva: Mashinostroyeniye [Васильев В.В. (1990). Композиционные материалы. Справочник. Москва: Машиностроение].

DeJack M. (2015). Literature Review of CGI and Ductile Iron and Development of Improved Models for HCF. Conference: International FEMFAT User Meeting: June 10–12. Steyr. (pp. 1–48). Steyr: Engineering Center Steyr.

Pikunov M.V. (2005). Plavka metallov. Kristallizatsiya splavov. Zatverdevaniye otlivok. Moskva: MISiS. [Пикунов М.В. (2005). Плавка металлов. Кристаллизация сплавов. Затвердевание отливок. Москва: МИСиС].

Yigezu B.S., Mahapatra M.M. & Jha P.K. (2013). Influence of reinforcement type on microstructure, hardness, and tensile properties of an aluminum alloy metal matrix composite. Journal of Minerals and Materials Characterization and Engineering, 1(4), 124–130. Doi: https://doi.org/10.4236/jmmce.2013.14022.

Kumar A., Singh R. C. & Chaudhary R. (2020). Recent progress in production of metal matrix composites by stir casting process: An overview. Materials Today: Proceedings, 21, 1453–1457. Doi: https://doi.org/10.1016/j.matpr.2019.10.079.

Singh J. & Chauhan A. (2019). A review of microstructure, mechanical properties and wear behavior of hybrid aluminium matrix composites fabricated via stir casting route. Sādhanā, 44(1), 16. Doi: https://doi.org/10.1007/s12046-018-1025-5.

Miracle D.B. (2005). Metal matrix composites – From science to technological significance. Composites science and technology,

(15–16), 2526–2540. Doi: https://doi.org/10.1016/j.compscitech.2005.05.027.

Soltani S., Khosroshahi R.A., Mousavian R.T., Jiang Z.-Y., Boostani A.F. & Brabazon D. (2017). Stir casting process for manufacture of Al-SiC composites. Rare Metals, 36(7), 581–590. Doi: https://doi.org/10.1007/s12598-015-0565-7.

Nebozhak I.A. (2016). Vliyanye armirovaniya dispersnym intermetallidom FeCr, implantirovannym v gazifitsiruyemuyu model’, na strukturu i mekhanicheskiye svoystva splava AK12. Lit’ye. Metallurgiya. 2016: Materialy XII Mezhdunarodnoy nauchno-prakticheskoy konferentsii: 24–26 maya. Zaporozh’ye. Zaporozh’ye: ZTPP, 176–178 [Небожак И.А. (2016). Влияние армирования дисперсным интерметаллидом FeCr, имплантированным в газифицируемую модель, на структуру и механические свойства сплава АК12. Литье. Металлургия. 2016: Материалы XII Международной научно-практической конференции: 24–26 мая. Запорожье. Запорожье: ЗТПП, 176–178].

Dan O. & Trofimova L. (2021). A Study of the Properties of Forming Mixtures Containing Polystyrene Wastes. Journal of Casting & Materials Engineering, 5(2), 14–19. Doi: https://doi.org/10.7494/jcme.2021.5.2.14.

Gusev S.S., Lobkov D.N. & Kazachkov S.S. (1999). Ispol’zovaniye metodov tsentrobezhnogo lit’ya dlya polucheniya izdeliy iz kompozitsionnykh materialov s uprochnennoy poverhnost’yu. Materialovedeniye, 5, 50–53 [Гусев С.С., Лобков Д.Н. & Казачков С.С.

(1999). Использование методов центробежного литья для получения изделий из композиционных материалов с упрочненной поверхностью. Материаловедение, 5, 50–53].

Kevorkijan V. (2003). Functionally graded aluminum-matrix composites. American Ceramic Society Bulletin, 82(2), 60–64.

Alekseeva Yu.S. (2008). Primeneniye metoda tsentrobezhnogo lit’ya dlya izgotovleniya vtulok iz gradientnykh kompozitsionnykh materialov. Vestnik FGOU MGAU, 4, 96–99 [Алексеева Ю.С. (2008). Применение метода центробежного литья для изготовления втулок из градиентных композиционных материалов. Вестник ФГОУ МГАУ, 4, 96–99].

Nukami T. & Flemings M.C. (1995). In situ synthesis of TiC particulate-reinforced aluminum matrix composites. Metallurgical and Materials Transactions A, 26(7), 1877–1884.

Olejnik E., Kurtyka P., Tokarski T., Maziarz W., Grabowska B. & Czapla P. (2016). Locally reinforcement TiC-Fe type produced in situ in castings. Archives of Foundry Engineering, 16(3), 77–82. Doi: https://doi.org/10.1515/afe-2016-0054.

Maziarz W., Bobrowski P., Wójcik A., Bigos A., Szymański Ł., Kurtyka P., Rylko N. & Olejnik E. (2020). Microstructure and Mechanical Properties of In Situ Cast Aluminum Based Composites Reinforced with TiC Nano-Particles. Materials Science Forum, 985, 211–217. Doi: https://doi.org/10.4028/www.scientific.net/MSF.985.211.

Kattner U.R., Lin J.C. & Chang Y.A. (1992). Thermodynamic assessment and calculation of the Ti-Al system. Metallurgical Transactions A, 23(8), 2081–2090.

Kalisz D., Żak P.L. & Dan O. (2021). Modeling the Filler Phase Interaction with Solidification Front in Al(TiC) Composite Produced by the In Situ Method. Materials, 14(24), 7560. Doi: https://doi.org/10.3390/ma14247560.

Downloads

Published

2022-01-14

How to Cite

Dan, O. (2022). An Analysis of the Features of Cast Composite Materials Based on Light Alloys Reinforced by Particles. Journal of Casting &Amp; Materials Engineering, 6(1), 8–13. https://doi.org/10.7494/jcme.2022.6.1.8

Issue

Section

Articles