Physicochemical Investigations of Hydrogels Containing Gold Nanoparticles Designed for Biomedical Use

Authors

  • Magdalena Głąb Cracow University of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, 37 Jana Pawła II Av., 31 – 864 Krakow, Poland
  • Sonia Kudłacik-Kramarczyk Cracow University of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, 37 Jana Pawła II Av., 31 – 864 Krakow, Poland
  • Anna Drabczyk Cracow University of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, 37 Jana Pawła II Av., 31 – 864 Krakow, Poland
  • Beata Grabowska AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta, 30 - 059 Krakow, Poland
  • Bożena Tyliszczak Cracow University of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, 37 Jana Pawła II Av., 31 – 864 Krakow, Poland

DOI:

https://doi.org/10.7494/jcme.2021.5.2.20

Abstract

Currently, many investigations are being performed to develop dressing materials with a positive effect on the wound healing
process. In general, innovative dressings should ensure wound exudate absorption, constitute an external barrier limiting the
possibility of wound contamination and, importantly, also provide therapeutic properties. This work is focused on obtaining
materials with potential use as dressings for treatment of difficult-to-heal wounds. The synthesis methodology of acrylic hydrogels
modified with selected modifiers, i.e. arabic gum, nanogold, bee pollen and chamomile extract, was developed. Next, the
sorption properties of the materials were determined as well as their behavior during the incubation in fluids imitating the
environment of the human body. Additionally, the impact of such an incubation on their structure was evaluated by FT-IR spectroscopy.
It was proved that the modifiers affected the sorption properties of hydrogels, i.e. samples with additives showed even
approx. 2.5-fold lower swelling ability. In turn, incubation of hydrogels in simulated body fluids did not cause any rapid changes
in pH, which may indicate the biocompatibility of the tested materials with the tested fluids. Thus, it may be concluded that the
developed materials show great application potential for biomedical purposes and may be subjected to more advanced studies
such as cytotoxicity assessments towards selected cell lines.

Downloads

Download data is not yet available.

References

Mahinroosta M., Jomeh Farsangi Z., Allahverdi A. & Shakoori Z. (2018). Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Materials Today Chemistry, 8, 42–55. Doi: https://doi.org/10.1016/j.mtchem.2018.02.004.

Kim S., Iyer G., Nadarajah A., Frantz J.M. & Spongberg A.L. (2010). Polyacrylamide Hydrogel Properties for Horticultural Applications. International Journal of Polymer Analysis and Characterization, 15(5), 307–318. Doi: https://doi.org/10.1080/1023666X.2010.493271.

Thakur S., Sharma B., Verma A., Chaudhary J., Tamulevicius S. & Thakur V.K. (2018). Recent approaches in guar gum hydrogel synthesis for water purification. International Journal of Polymer Analysis and Characterization, 23, 621–632. Doi: https://doi.org/10.1080/1023666X.2018.1488661.

Zagórska-Dziok M. & Sobczak M. (2020). Hydrogel-Based Active Substance Release Systems for Cosmetology and Dermatology Application: A Review. Pharmaceutics, 12(5), 396. Doi: https://doi.org/10.3390/pharmaceutics12050396.

Ahsan A., Tian W., Farooq M.A. & Khan D.H. (2020). An overview of hydrogels and their role in transdermal drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(8). Doi: https://doi.org/10.1080/00914037.2020.1740989.

Varaprasad K., Narayana Reddy N., Mithil Kumar N., Vimala K., Ravindra S. & Mohana Raju K. (2010). Poly(acrylamide-chitosan) Hydrogels: Interaction with Surfactants. International Journal of Polymeric Materials and Polymeric Biomaterials, 59(12), 981–993. Doi: https://doi.org/10.1080/00914037.2010.504147.

Liu Y., Weng R., Wang W., Wei X., Li J., Chen X., Liu Y., Lu F. & Li Y. (2020). Tunable physical and mechanical properties of gelatin hydrogel after transglutaminase crosslinking on two gelatin types. International Journal of Biological Macromolecules, 162, 405–413. Doi: https://doi.org/10.1016/j.ijbiomac.2020.06.185.

Ahmad S., Ahmad M., Manzoor K., Purwar R. & Ikram S. (2019). A review on latest innovations in natural gums based hydrogels: Preparations & applications. International Journal of Biological Macromolecules, 136, 870–890. Doi: https://doi.org/10.1016/j.ijbiomac.2019.06.113.

Kumar A. & Han S.S. (2017). PVA-based hydrogels for tissue engineering: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(4), 159–182. Doi: https://doi.org/10.1080/00914037.2016.1190930.

Drabczyk A., Kudłacik-Kramarczyk S., Tyliszczak B., Rudnicka K., Urbaniak M., Michlewska S., Królczyk J.B., Gajda P. & Pielichowski K. (2020). Measurement methodology toward determination of structure-property relationships in acrylic hydrogels with starch and nanogold designed for biomedical applications. Measurement, 156, 107608. Doi: https://doi.org/10.1016/j.measurement.2020.107608.

Deepa G., Thulasidasan A.K., Anto R.J., Pillai J.J. & Kumar G.S. (2012). Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy. International Journal of Nanomedicine, 7, 4077–4088. Doi: https://doi.org/10.2147/IJN.S30149.

Sennakesavan G., Mostakhdemin M., Dkhar L.K., Seyfoddin A. & Fatihhi S.J. (2020). Acrylic acid/acrylamide based hydrogels and its properties – A review. Polymer Degradation and Stability, 180, 109308. Doi: https://doi.org/10.1016/j.polymdegradstab.2020.109308.

Arnold M.P., Daniels A.U., Ronken S., García H.A., Friederich N.F., Kurokawa T., Gong J.P. & Wirz P. (2011). Acrylamide Polymer Double-Network Hydrogels: Candidate Cartilage Repair Materials with Cartilage-Like Dynamic Stiffness and Attractive Surgery-Related Attachment Mechanics. Cartilage, 2, 374–383. Doi: https://doi.org/10.1177/1947603511402320.

Sandu T., Sarbu A., Constantin F., Vulpe S. & Iovu H. (2012). Acrylic Hydrogels-Based Biocomposites: Synthesis and Characterization. Journal of Applied Polymer Science, 127(5), 4061–4071.

Doi: https://doi.org/10.1002/app.37992.

Mohamad N., Mohd Amina M.C.I., Pandeya M., Ahmada N. & Rajab N.F. (2014). Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: Accelerated burn wound healing in an animal model. Carbohydrate Polymers, 114, 312–320. Doi: https://doi.org/10.1016/j.carbpol.2014.08.025.

Staneva D., Vasileva-Tonkova E. & Grabchev I. (2017). Preparation, characterization, and antibacterial activity of composite material: Cotton fabric/hydrogel/silver nanoparticles. International Journal of Polymer Analysis and Characterization, 22(2), 104–111. Doi: https://doi.org/10.1080/1023666X.2016.1249220.

Kumar S., Majhi R. K., Sanyasi S., Goswami C. & Goswami L. (2018). Acrylic acid grafted tamarind kernel polysaccharide-based hydrogel for bone tissue engineering in absence of any osteo-inducing factors. Connective Tissue Research, 59(sup1), 111–121. Doi: https://doi.org/10.1080/03008207.2018.1442444.

Tyliszczak B., Kudłacik-Kramarczyk S., Drabczyk A., Bogucki R., Olejnik E., Kinasiewicz J. & Głąb M. (2018). Hydrogels containing caffeine and based on Beetosan® – proecological chitosan – preparation, characterization, and in vitro cytotoxicity. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(15), 931–935. Doi: https://doi.org/10.1080/00914037.2018.1525537.

Jayaramudu T., Varaprasad K., Raghavendra G.M., Sadiku E.R. & Mohana Raju K. (2017). Green synthesis of tea Ag nanocomposite hydrogels via mint leaf extraction for effective antibacterial activity. Journal of Biomaterials Science, Polymer Edition, 28(14), 1588–1602.

Tan H.-L, Teow S.-Y. & Pushpamalar J. (2019). Application of Metal Nanoparticle–Hydrogel Composites in Tissue Regeneration. Bioengineering, 6(1), 17.

Park H., Lee H., An H. & Lee K.Y. (2017). Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration. Carbohydrate Polymers, 162, 100–107. Doi: https://doi.org/10.1016/j.carbpol.2017.01.045.

Derkach S.R., Ilyin S.O., Maklakova A.A., Kulichikhin V.G. & Malkin A.Y. (2015). The rheology of gelatin hydrogels modified by κ-carrageenan. LWT – Food Science and Technology, 63(1), 612–619. Doi: https://doi.org/10.1016/j.lwt.2015.03.024.

Makvandi P., Ali G.W., Sala F.D., Abdel-Fattah W.I. & Borzacchiello A. (2019). Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydrate Polymers, 223, 115023. Doi: https://doi.org/10.1016/j.carbpol.2019.115023.

Li T., Zhang M., Wang J., Wang T., Yao Y., Zhang X., Zhang C. & Zhang N. (2016).Thermosensitive Hydrogel Co-loaded with Gold Nanoparticles and Doxorubicin for Effective Chemoradiotherapy. AAPS Journal, 18, 146–155. Doi: https://doi.org/10.1208/s12248-015-9828-3.

Ragab T.I.M., Nada A.A., Ali E.A., Shalaby A.S.G., Soliman A.A.F., Emam M. & El Raey M.A. (2019). Soft hydrogel based on modified chitosan containing P. granatum peel extract and its nano-forms: Multiparticulate study on chronic wounds treatment. International Journal of Biological Macromolecules, 135, 407–421. Doi: https://doi.org/10.1016/j.ijbiomac.2019.05.156.

Gallo E., Diaferia C., Di Gregorio E., Morelli G., Gianolio E. & Accardo A. (2020). Peptide-Based Soft Hydrogels Modified with Gadolinium Complexes as MRI Contrast Agents. Pharmaceuticals, 13(2), 19. Doi: https://doi.org/10.3390/ph13020019.

Rask F., Mihic A., Reis L., Dallabrida S.M., Ismail N.S., Sider K., Simmons C.A., Rupnick M.A., Weisel R.D., Li R.K. & Radisic M. (2010). Hydrogels modified with QHREDGS peptide support cardiomyocyte survival in vitro and after sub-cutaneous implantation. Soft Matter, 6, 5089–5099. Doi: https://doi.org/10.1039/C0SM00362J.

Pankongadisak P. & Suwantong O. (2019). Enhanced properties of injectable chitosan-based thermogelling hydrogels by silk fibroin and longan seed extract for bone tissue engineering. International Journal of Biological Macromolecules, 138, 412–424. Doi: https://doi.org/10.1016/j.ijbiomac.2019.07.100.

Sotiropoulou N.S., Megremi S.F. & Tarantilis P. (2020). Evaluation of Antioxidant Activity, Toxicity, and Phenolic Profile of Aqueous Extracts of Chamomile (Matricaria chamomilla L.) and Sage (Salvia offcinalis L.) Prepared at Different Temperatures. Applied Sciences, 10(7), 2270. Doi: https://doi.org/10.3390/app10072270.

Kurek-Górecka A., Górecki M., Rzepecka-Stojko A., Balwierz R. & Stojko J. (2020). Bee Products in Dermatology and Skin Care. Molecules, 25(3), 556. Doi: https://doi.org/10.3390/molecules-

Kong F.Y., Zhang J.W., Li R.F., Wang Z.X. Wang W.J. & Wang W. (2017). Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications. Molecules, 22(9), 1445. Doi: https://doi.org/10.3390/molecules22091445.

Yafout M., Ousaid A., Khayati Y. & Otmani I.S. (2021). Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Science African, 11, e00685. Doi: https://doi.org/10.1016/j.sciaf.2020.e00685.

Topsakal A., Midha S., Yuca E., Tukay A., Sasmazel H.T., Kalaskar D.M. & Gunduz O. (2021). Study on the cytocompatibility, mechanical and antimicrobial properties of 3D printed composite scaffolds based on PVA/ Gold nanoparticles (AuNP)/Ampicillin (AMP) for bone tissue engineering. Materials Today Communications, 28, 102458. Doi: https://doi.org/10.1016/

j.mtcomm.2021.102458.

Abdulazeem L., Jasim S.A. & Rajab W.J. (2021). Anti-bacterial activity of gold nanoparticles against two type of antibiotic resistance pathogenic bacteria in Al-Hilla city. Materials Today: Proceedings. Doi: https://doi.org/10.1016/j.matpr.2021.05.234.

Tyliszczak B., Drabczyk A., Kudłacik-Kramarczyk S. & Sobczak-Kupiec A. (2018). Synthesis, characterization, and in vitro cytotoxicity of chitosan hydrogels containing nanogold. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(4), 175–182. Doi: https://doi.org/10.1080/00914037.2018.1429438.

Vargas-Estrada L., Torres-Arellano S., Longoria A., Arias D.M., Okoye P.U. & Sebastian P.J. (2020). Role of nanoparticles on microalgal cultivation: A review. Fuel, 280, 118598. Doi: https://doi.org/10.1016/j.fuel.2020.118598

Srinath B.S. & Ravishankar Rai V. (2014). Biosynthesis of highly monodispersed, spherical gold nanoparticles of size 4–10 nm from spent cultures of Klebsiella pneumoniae. 3 Biotech, 5, 671–676. Doi: https://doi.org/10.1007/s13205-014-0265-2.

Liang A., Liu Q., Wen G. & Jiang Z. (2012). The surface-plasmon-resonance effect of nanogold/silver and its analytical applications. Trends in Analytical Chemistry, 37, 32–47. Doi: https://doi.org/10.1016/j.trac.2012.03.015.

Huang X. & El-Sayed M.A. (2010). Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 1, 13–28. Doi: https://doi.org/10.1016/j.jare.2010.02.002.

Albusta N., Alarabi D., Alsoud S.A., Keogh M., Akhtar S. & Henari F. (2018). Detection of Glucose using Gold Nanoparticles Prepared by Green Synthesis. International Journal of Engineering & Scientific Research, 6(10), 1–10.

Kar P.K., Murmu S., Saha S., Tandon V. & Acharya K. (2014). Anthelmintic Efficacy of Gold Nanoparticles Derived from a Phytopathogenic Fungus, Nigrospora oryzae. PLoS ONE, 9(1), e84693. Doi: https://doi.org/10.1371/journal.pone.0084693.

Ngo V.K.T., Nguyen H.P.U., Huynh T.P., Tran N.N.P., Lam Q.V. & Huynh T.D. (2015). Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157:H7. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6(3), 035015.

Duan L., Yefu W., Li S.S., Zhixiang W. & Zhai J. (2005). Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method. BMC Infectious Diseases, 5(53). Doi: https://doi.org/10.1186/1471-2334-5-53.

Amendola V. & Meneghetti M. (2009). Size Evaluation of Gold Nanoparticles by UV-vis Spectroscopy. Journal of Physical Chemistry, 113(11), 4277–4285. Doi: https://doi.org/10.1021/jp8082425.

Zhan Y., Fu W., Xing Y., Ma X. & Chen C. (2021). Advances in versatile anti-swelling polymer hydrogels. Materials Science and Engineering: C, 127, 112208. Doi: https://doi.org/10.1016/j.msec.2021.112208.

Richbourg N. & Peppas N.A. (2020). The swollen polymer network hypothesis: Quantitativemodels of hydrogel swelling, stiffness, and solute transport. Progress in Polymer Science, 105, 101243. Doi: https://doi.org/10.1016/j.progpolymsci.2020.101243.

Zhu Q., Barney C.W. & Kendra A.E. (2015). Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete. Materials and Structures, 48, 2261–2276. Doi: https://doi.org/10.1617/s11527-014-0308-5.

Al-Anbakey A.M.S. (2014). Effect of pH on swelling properties of commercial polyacrylic acid hydrogel bead. Journal of Atoms and Molecules, 4(1), 656–665.

Parlinska-Wojtan M., Kus-Liskiewicz M., Depciuch J. & Sadik O. (2016). Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using chamomile terpenoids as a combined reducing and capping agent. Bioprocess and Biosystems Engineering, 39, 1213–1223. Doi: https://doi.org/10.1007/s00449-016-1599-4.

Anjos O., Santos A.J.A., Dias T. & Estevinho L.M. (2017). Application of FTIR-ATR spectroscopy on the bee pollen characterization. Journal of Apicultural Research, 56(3), 210–218. Doi: https://doi.org/10.1080/00218839.2017.1289657.

Downloads

Published

2021-07-02

Issue

Section

Articles

How to Cite

Physicochemical Investigations of Hydrogels Containing Gold Nanoparticles Designed for Biomedical Use. (2021). Journal of Casting & Materials Engineering, 5(2), 20-30. https://doi.org/10.7494/jcme.2021.5.2.20