Study of AlSi7Mg0.6 Alloy by Selective Laser Melting: Mechanical Properties, Microstructure, Heat Treatment
DOI:
https://doi.org/10.7494/jcme.2019.3.1.1Abstract
This study presents a panorama of the AlSi7Mg0.6 (A357) aluminum alloy in additive manufacturing by selective laser melting. The document is mainly interested in the metallurgical tempers obtained after manufacture and after heat treatment; it quickly cover the process. The results concerning the material integrity (porosity), mechanical properties, microstructures, residual stresses, etc., are presented in order to best define the technological capacities of these metallurgical tempers: as-built, soft annealed, T6, and artificial aging. Some information on the mechanisms and kinetics of precipitation is also presented using the Johnson–Mehl–Avrami–Kolmogorov model. Finally, the conclusion proposes an inventory (advantages/disadvantages) of the metallurgical tempers obtained to better understand the industrial applications.
Downloads
References
Pillot S. (2016). Fusion laser sélective de lit de poudres métalliques. Technique de l’ingénieur BM7900.
Mauduit A., Pillot S. & Frascati F. (2015). Application study of AlSi10Mg alloy by selective laser melting: physical and mechanical
properties, microstructure, heat treatments and manufacturing of aluminium metallic matrix composite (MMC). Metallurgical research & technology, 112, 605. Doi:10.1051/metal/2015039.
Mauduit A., Pillot S. & Gransac H. (2017). Study of the suitability of aluminum alloys for additive manufacturing by laser powder-bed fusion. U.P.B. Scientific Bulletin series B, 79(4), 219–238.
Rao H., Giet S., Yang K., Wu X. & Davies C.H.J. (2016). The influence of processing parameters on aluminium alloy A357 manufactured by selective laser melting. Materials & Design, 109, 334–346. Doi: 10.1016/j.matdes.2016.07.009.
Spierings A.B., Schneider M. & Eggenberger R. (2011). Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyping Journal, 17(5), 380–386. Doi: 10.1108/13552541111156504.
Trevisan F., Calignano F., Lorusso M. & Ambrosio E.P. (2016). Effects of heat treatments on A357 alloy produced by selective laser melting. World PM2016 – Oral session.
Brandl E., Heckenberger U., Holzinger V. & Buchbinder D. (2011). Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Materials & Design, 34, 159–169. Doi:10.1016/j.matdes.2011.07.067.
Kempen K., Thijs L., Van Humbeeck J. & Kruth J.P. (2012). Mechanical properties of AlSi10Mg produced by selective laser melting. Physics Procedia, 39, 439–446.
Manfredi D., Calignano F., Krishnan M., Canali R., Ambrosio E.P. & Atzeni E. (2013). From powders to dense metal parts: characterization of a commercial AlSi10Mg alloy processed through direct metal laser sintering. Materials, 6, 856–869. Doi: 10.3390/ma6030856.
Rao J.H., Zhang Y., Fang X., Chen Y., Wu X. & Davies C.H.J. (2017). The origins for the tensile properties of selective laser melted aluminium alloy A357. Additive Manufacturing, 17, 113–122. Doi: 10.1016/j.addma.2017.08.007.
Aboulkhair N.T., Everitt N.M., Ashcroft I. & Tuck C. (2014). Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing, 1(4), 77–86. Doi:10.1016/ j.addma.2014.08.001.
Weingarten C., Buchbinder D., Pirch N., Meiners W., Wissenbach K. & Poprawe R. (2015). Formation and reduction of hydrogen
porosity during selective laser melting of AlSi10Mg. Journal of Materials Processing Technology, 221, 112–120. Doi: 101016/j.matprotec.2015.02.013.
Dubost B. & Sainfort P. (1991). Durcissement par précipitation des alliages d’aluminium. Technique de l’ingénieur M240v1.
Yan J. (2006). Strength modelling of Al-Cu-Mg type alloys. Doctoral Thesis, University of Southampton. Faculty of Engineering Science & Mathematics.
Appolaire B. Croissance/Dissolution, cours théorique de l’INPL.
Fang X., Song M., Li K. & Du Y. (2010). Precipitation sequence of an aged Al-Mg-Si alloy. Journal of Mining and Metallurgy. Section B: Metallurgy, 46(2), 171–180. Doi: 10.2298/jmmb1002171f.