Identification of Gas Products from Pyrolysis Process of Waxes Used in Lost-Wax Casting Technology
DOI:
https://doi.org/10.7494/jcme.2018.2.3.53Abstract
Foundry waxes currently used in lost-wax casting technology are composed of paraffin, stearin, and – to a lesser extent – ceresin, polyethylene wax, and other natural and synthetic waxes. Most of these compounds are non-toxic; however, they may release aromatic hydrocarbons as a result of exposure to high temperatures. Based on a chromatographic analysis (pyrolysis gas chromatography-mass spectrometry, Py-GC/MS), the compounds that are separated from the popular wax mixtures used in foundries were evaluated (as well as the impact they may have on foundry workers). For this purpose, the three main stages of the process (wax, burnout, and pouring) were analyzed, and the appropriate test temperature was chosen (similar to the actual conditions during the process).
Downloads
References
Haratym R., Biernacki R. & Myszka D. (2008). Ekologiczne wytwarzanie dokładnych odlewów w formach ceramicznych. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
Allendorf H. (1960). Odlewanie precyzyjne za pomocą modeli wytapianych. Warszawa: Państwowe Wydawnictwa Techniczne.
Energy Technocast Pvt. Ltd. (2015). Promo materials (leaflet).
Zych J., Kolczyk J. & Snopkiewicz T. (2013). New investigation method of the permeability of ceramic moulds applied in the investment casting technology. Archives of Foundry Engineering, 13(2), 107–112.
Lewandowski J.L. (1995). Tworzywa na formy odlewnicze. Kraków: Akapit.
Baron J., Miazga B., Ntaflos T., Puziewicz J. & Szumny A. (2016). Beeswax remnants, phase and major element chemical composition of the bronze age mould from Gaj Oławski (SW Poland). Archaeological and Anthropological Sciences, 8(1), 187–196. Doi: 10.1007/s12520-014-0225-0.
Freitas C.A., Vieira Í.G., Sousa P.H., Muniz C.R., Gonzaga M.L. & Guedes M.I. (2016). Carnauba wax p-methoxycinnamic diesters: Characterisation, antioxidant activity and simulated gastrointestinal digestion followed by in vitro bioaccessibility. Food Chemistry, 196, 1293–1300. Doi: 10.1016/j.foodchem.2015.10.101.
Bonaduce I., Cito M. & Colombini M.P. (2009). The development of a gas chromatographic-mass spectrometric analytical procedure for the determination of lipids, proteins and resins in the same paint micro-sample avoiding interferences from inorganic media. Journal of Chromatography A, 1216, 5931–5939. Doi: 10.1016/j.chroma.2009.06.033.
Chica E., Agudelo S. & Sierra N. (2013). Lost wax casting process of the runner of a propeller turbine for small hydroelectric power plants. Renewable Energy, 60, 739–745. Doi: 10.1016/j.renene.2013.06.030.
Bombelli P., Howe C.J. & Bertocchini F. (2017). Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, 27(8), R292–R293. Doi: 10.1016/j.cub.2017.02.060.
Regert M., Langlois J. & Colinart S. (2005). Characterisation of wax works of art by gas chromatographic procedures. Journal of Chromatography A, 1091, 124–136. Doi: 10.1016/j.chroma.2005.07.039.
Grabowska B., Kaczmarska K., Bobrowski A., Żymankowska-Kumon S. & Kurleto-Kozioł Ż. (2017). TG-DTG-DSC, FTIR, DRIFT, and Py-GC-MS Studies of Thermal Decomposition for Poly(sodium acrylate)/Dextrin (PAANa/D) – New Binder BioCo3. Journal of Casting & Materials Engineering, 1(1), 27–32. Doi: 10.7494/jcme.2017.1.1.27.
Russo M.V. & Avino P. (2012). Characterization and Identification of Natural Terpenic Resins employed in “Madonna con Bambino e Angeli” by Antonello da Messina using Gas Chromatography-Mass Spectrometry. Chemistry Central Journal, 6(1), 59–69. Doi: 10.1186/1752-153X-6-59.
Żymankowska-Kumon S. (2016). Ecological assessment of foundry binders from cold-box technology by gas chromatography method. World Scientific News, 57, 554–561.