Influence of Fluoride Ions in Artificial Saliva Solution to Corrosion Behavior of Ti-6Al-4V and Ti-10Mo-4Zr Titanium Alloys

Authors

  • Joanna Loch AGH University of Science and Technology Faculty of Foundry Engineering Reymonta Street 23 30-059 Cracow, Poland
  • Halina Krawiec AGH University of Science and Technology Faculty of Foundry Engineering Reymonta Street 23 30-059 Cracow, Poland

DOI:

https://doi.org/10.7494/jcme.2018.2.3.57

Abstract

Titanium alloys used in medical applications (especially dentistry) are exposed to the actions of various compounds that appear periodically in the mouth. Fluorine compounds are dangerous for the surface of titanium alloys, because they generate a dissolution of the passive layer. In this way, they destroy the surface of dental implants and cause the absorption of metal ions into the human body.

The presented work was aimed to describe the effect of fluoride ions on the corrosive behavior of the commercial Ti-6Al-4V and new Ti-10Mo-4Zr alloys that can be used in stomatology. Electrochemical measurements such as open circuit potential (OCP), linear sweet voltamperometry (LSV) and impedance spectroscopy (EIS) were performed to get information on the corrosive behavior of titanium in artificial saliva solutions (MAS) with different concentrations of NaF. It has been revealed that a high concentration of fluoride ions enhance the current density in the anodic domain, especially for the Ti-10Mo-4Zr alloy. EIS measurements performed at a potential of 0.5 V vs. AgCl (3 M KCl) show that the Ti-10Mo-4Zr alloy has a typical two-layer structure of its passive film. This passive film consists of the outer and inner layers, respectively. The resistance of the outer layer is significantly lower than the resistance of the inner layer.

Downloads

Download data is not yet available.

References

Alves V.A., Reis R.Q., Santos I.C.B., Souza D.G., de F. Gonçalves T., Pereira-da-Silva M., Rossi & da Silva L. (2009). In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25°C and 37°C. Corrosion Science, 51(10), 2473–2482. Doi:10.1016/j.corsci.2009.06.035.

Kim E.-J., Jeong Y.-H., Choe H.-C. & Brantley W.. (2012). Surface phenomena of HA/TiN coatings on the nanotubular-structured beta Ti–29Nb–5Zr alloy for biomaterials. Applied Surface Science, 258(6), 2083–2087. Doi:10.1016/j.apsusc.2011.04.051.

Hsu R. W.-W., Yang C.-C., Huang C.-A. & Chen Y.-S. (2004). Investigation on the corrosion behavior of Ti–6Al–4V implant alloy by electrochemical techniques. Materials Chemistry and Physics, 86(2–3), 269–278. Doi:10.1016/j.matchemphys.2004.02.025.

Sivakumar B., Kumar S. & Sankara Narayanan T.S.. (2011). Fretting corrosion behaviour of Ti–6Al–4V alloy in artificial saliva containing varying concentrations of fluoride ions. Wear, 270(3–4), 317–324. Doi:10.1016/j.wear.2010.09.008.

Biesiekierski A., Ping D.H., Yamabe-Mitarai Y. & Wen C. (2014). Impact of ruthenium on microstructure and corrosion behavior of β-type Ti-Nb-Ru alloys for biomedical applications. Materials and Design, 59, 303–309. Doi:10.1016/j.matdes.2014.02.058.

Cui W.F., Jin L. & Zhou L. (2013). Surface characteristics and electrochemical corrosion behavior of a pre-anodized microarc oxidation coating on titanium alloy. Materials Science and Engineering: C, 33(7), 3775–3779. Doi:10.1016/j.msec.2013.05.011.

Milošev I., Žerjav G., Calderon Moreno J.M. & Popa M. (2013). Electrochemical properties, chemical composition and thickness of passive film formed on novel Ti-20Nb-10Zr-5Ta alloy. Electrochimica Acta, 99, 176–189. Doi:10.1016/j.electacta.2013.03.086.

Mohan L. & Anandan C. (2013). Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti-13Nb-13Zr. Applied Surface Science, 282(1), 281–290. Doi:10.1016/j.apsusc.2013.05.120.

Krawiec H., Vignal V., Loch J. & Erazmus-Vignal P. (2015). Influence of plastic deformation on the microstructure and corrosion behaviour of Ti-10Mo-4Zr and Ti-6Al-4V alloys in the Ringer’s solution at 37°C. Corrosion Science, 96, 160–170. Doi:10.1016/j.corsci.2015.04.006.

Tsutsumi Y., Niinomi M., Nakai M., Tsutsumi H., Doi H., Nomura N. & Hanawa T. (2012). Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy. Applied Surface Science, 262, 34–38. Doi:10.1016/j.apsusc.2012.01.024.

Diomidis N., Mischler S., More N.S. & Roy M. (2012). Tribo-electrochemical characterization of metallic biomaterials for total joint replacement. Acta Biomaterialia, 8(2), 852–859. Doi:10.1016/j.actbio.2011.09.034.

Zhao C., Zhang X. & Cao P. (2011). Mechanical and electrochemical characterization of Ti-12Mo-5Zr alloy for biomedical application. Journal of Alloys and Compounds, 509(32), 8235–8238. Doi:10.1016/j.jallcom.2011.05.090.

Wang Z., Huang W. & Ma Y. (2014). Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs. Materials Science and Engineering C, 42, 211–218. Doi:10.1016/j.msec.2014.05.039.

González M., Peña J., Gil F.J. & Manero J.M. (2014). Low modulus Ti-Nb-Hf alloy for biomedical applications. Materials Science and Engineering C, 42, 691–695. Doi:10.1016/j.msec.2014.06.010.

Diomidis N., Mischler S., More N.S., Roy M. & Paul S.N. (2011). Fretting-corrosion behavior of β titanium alloys in simulated synovial fluid. Wear, 271(7–8), 1093–1102.

Castro M., Ponces M.J., Lopes J.D. & Pollmann M.C.F. (2015). Orthodontic wires and its corrosion – The specific case of stainless steel and beta-titanium. Journal of Dental Sciences, 10(1), 1–7. Doi:10.1016/j.jds.2014.07.002.

Loch J., Krawiec H., Łukaszczyk A. & Augustyn-Pieniążek J. (2016). Corrosion resistance of titanium alloys in the artificial saliva solution. Journal of Achievements in Materials and Manufacturing Engineering, 74(1), 29–36.

Sampaio M., Buciumeanu M., Henriques B., Silva F.S., Souza J.C.M. & Gomes J.R. (2015). Tribocorrosion behavior of veneering biomedical PEEK to Ti6Al4V structures. Journal of the Mechanical Behavior of Biomedical Materials, 54, 123–130. Doi:10.1016/j.jmbbm.2015.09.010.

Mareci D., Chelariu R., Gordin D.M., Ungureanu G. & Gloriant T. (2009). Comparative corrosion study of Ti-Ta alloys for dental applications. Acta Biomaterialia, 5(9), 3625–3639. Doi:10.1016/j.actbio.2009.05.037.

Schiff N., Grosgogeat B., Lissac M. & Dalard F. (2002). Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials, 23(9), 1995–2002. Doi.10.1016/S0142-9612(01)00328-3.

Souza J.C.M., Ponthiaux P., Henriques M., Oliveira R., Teughels W., Celis J.-P. & Rocha L. a. (2013). Corrosion behaviour of titanium in the presence of Streptococcus mutans. Journal of dentistry, 41(6), 528–34. Doi:10.1016/j.jdent.2013.03.008.

PN-EN ISO 10993-15. (2005). Biologiczna ocena wyrobów medycznych – Cz. 15; Identyfikacja i oznaczanie ilościowe produktów degradacji metali i stopów.

Vieira A.C., Ribeiro A.R., Rocha L. & Celis J.P. (2006). Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear, 261(9), 994–1001. Doi:10.1016/j.wear.2006.03.031.

Souza J.C.M., Barbosa S.L., Ariza E., Celis J.-P. & Rocha L. (2012). Simultaneous degradation by corrosion and wear of titanium in artificial saliva containing fluorides. Wear, 292–293, 82–88. Doi:10.1016/j.wear.2012.05.030.

Huang H.-H. & Lee T.-H. (2005). Electrochemical impedance spectroscopy study of Ti-6Al-4V alloy in artificial saliva with fluoride and/or bovine albumin. Dental Materials, 21(8), 749–755. Doi:10.1016/j.dental.2005.01.009.

Sakairi M., Kinjyo M. & Kikuchi T. (2011). Repassivation behavior of titanium in artificial saliva investigated with a photon rupture method. Electrochimica Acta, 56(4), 1786–1791. Doi:10.1016/j.electacta.2010.08.090.

Loch J., Krawiec H. & Łukaszczyk A. (2015). Wpływ fluorków i kwasu mlekowego na odporność korozyjną stopów tytanu w symulowanym roztworze sztucznej śliny. Archives of Foundry Engineering, 1(4), 87–90.

Takemoto S., Hattori M., Yoshinari M., Kawada E. & Oda Y. (2005). Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin. Biomaterials, 26(8), 829–837. Doi:10.1016/j.biomaterials.2004.03.025.

Golvano I., Garcia I., Conde A., Tato W. & Aginagalde A. (2015). Influence of fluoride content and pH on corrosion and tribocorrosion behaviour of Ti13Nb13Zr alloy in oral environment. Journal of the Mechanical Behavior of Biomedical Materials, 49, 186–196. Doi:10.1016/j.jmbbm.2015.05.008.

Dąbrowska E., Balunowska M. & Letko R. (2001). Zagrożenia wynikające z nadmiernej podaży fluoru. Nowa Stomatologia, 4, 22–27.

Nakai H., Morita H., Tomasello P. & Nakatsuji H. (1998). Electronic structures of MoF6 and MoOF4 in the ground and excited states: A SAC-CI and frozen-orbital-analysis study. Journal of Physical Chemistry A, 102(11), 2033–2043. Doi:10.1021/jp973052s.

Downloads

Published

2018-10-31

How to Cite

Loch, J., & Krawiec, H. (2018). Influence of Fluoride Ions in Artificial Saliva Solution to Corrosion Behavior of Ti-6Al-4V and Ti-10Mo-4Zr Titanium Alloys. Journal of Casting &Amp; Materials Engineering, 2(3), 57. https://doi.org/10.7494/jcme.2018.2.3.57

Issue

Section

Articles