Deoxidation Impact on Non-Metallic Inclusions and Characterization Methods


  • Cécile Nicoli LaBoMaP, Arts et Métiers ParisTech, 71250 Cluny, France CastMetal, 1 Boulevard de la Boissonnette, 42110 Feurs, France Université de Lyon, ECAM Lyon, INSA-Lyon, LabECAM, F-69005 Lyon, France
  • Jean-François Carton
  • Alexis Vaucheret
  • Philippe Jacquet



Deoxidation is an unavoidable step in the elaboration of steel. The study of its influence could improve the quality of low-carbon steel (0.20–0.25 wt.% of carbon). There are many deoxidation methods, and the most-common one consists of adding aluminum. Although it is a classic method, determining the optimal process parameters (quantity, yield, etc.…) could be very sensitive. Deoxidation plays a determining role on inclusion cleanliness, especially on sulfide morphology. In order to control the efficiency of deoxidation, different techniques can be used. In this paper, an automated counting procedure on a scanning electron microscope with a field emission gun (FEG-SEM) is presented. This method was applied on samples cast in our laboratory under different deoxidation conditions. According to this, the resulting inclusion population is correlated with the aluminum content to find the optimal process parameters.


Download data is not yet available.


Zhang G.-H. & Chou K.-C. (2015). Deoxidation of molten steel by aluminum. Journal of Iron and Steel Research, International, 22(10), 905–908. doi:10.1016/S1006-706X(15)30088-1

Li Y., Wan X. L., Lu W. Y., Shirzadi A. A., Isayev O., Hress O. & Wu K. M. (2016). Effect of Zr-Ti combined deoxidation on the microstructure and mechanical properties of high-strength low-alloy steels. Materials Science and Engineering A, 659, 179–187. doi:10.1016/j.msea.2016.02.035

Golubtsov V. A., Shub L. G., Deryabin A. A. & Usmanov R. G. (2006). Treating steel outside the furnace more efficiently. Metallurgist, 50(11–12), 634–637. doi:10.1007/s11015-006-0135-1

Li Z., Liu C., Sun Q. & Jiang M. (2015). Effect of deoxidation process on distribution characteristics of inclusions in silicon steel slabs. Journal of Iron and Steel Research, International, 22(Supplement 1), 104–110. doi:10.1016/S1006-706X(15)30147-3

Yarwood J. C., Flemings M. C. & Elliott J. F. (1971). Inclusion formation in the Fe-O-S system. Metallurgical Transactions, 2(9), 2573–2582. doi:10.1007/BF02814897

Zhang L. & Thomas B. G. (2006). State of the art in the control of inclusions during steel ingot casting. Materials and Metallurgical Transactions, 37(5), 733–761.

Ito Y., Masumitsu N. & Matsubara K. (1981). Formation of Manganese Sulfide in Steel. Transactions of the iron and steel institute of Japan, 21(7), 477–484. doi:10.2355/isijinternational1966.21.477

Editions Techniques des Industries de la Fonderie. (2007). Méthode micrographique de détermination de la teneur en inclusions non métalliques des aciers moulés. NF EN 10247.

Pokorny A. & Pokorny J. (1998). Inclusions non métalliques dans l’acier. Techniques de l’Ingenieur, 33(M220), 1–43.

Hénault E. (2006). Method of automatic characterization of inclusion population by a SEM-FEG/EDS/Image. JEOL News, 41E(1), 22–24.

Le Coze J. & Saleil J. (2015). La propreté des aciers: une longue conquête scientifique et technologique de la sidérurgie. Matériaux et Techniques, 103(5), 1–16.

ASTM International. (2005). ASTM E45-05 Standard Test Methods for Determining the Inclusion Content of Steel, 19. doi:10.1520/E0045-05E03.2




How to Cite

Nicoli, C., Carton, J.-F., Vaucheret, A., & Jacquet, P. (2018). Deoxidation Impact on Non-Metallic Inclusions and Characterization Methods. Journal of Casting &Amp; Materials Engineering, 1(4), 97.