Impact of Density Degree and Grade of Inorganic Binder on Behavior of Molding Sand at High Temperature

Authors

  • Mateusz Stachowicz Wroclaw University of Technology
  • Patrycja Paduchowicz Wrocław University of Science and Technology
  • Kazimierz Granat Wrocław University of Science and Technology

DOI:

https://doi.org/10.7494/jcme.2017.1.3.64

Abstract

This paper discusses the impact of high temperatures (up to 900°C) on molding and core sand with inorganic binders selected from among the group of unmodified grades of hydrated sodium silicate (water-glass). Molding sands with medium quartz sand were made under laboratory conditions and compacted at the different energy inputs necessary for obtaining various apparent densities (ϱ0). Due to the different composition and apparent density of molding mixtures hardened via microwaves at a frequency of 2.45 GHz, it was possible to assess their deformation (L) at a high temperature above the binder’s eutectic temperature. For this purpose, an apparatus for hot distortion tests was used whose construction and equipment allows us to measure the thermoplastic deformations in molding sand in many aspects; i.e., in its time of annealing. The article proposes new possibilities of interpreting the hot distortion phenomena in comparative studies of molding materials and mixtures. The application of this new measurement method revealed the differences between molding mixtures made with five inorganic binders with a molar module ranging from 2.0 to 3.4 and apparent density ranging from 1.34 to 1.57 g/cm3. It was established that distortions under the influence of high temperatures last the longest in molding sand with a binder with the highest molar module (3.4). Research also revealed that the density of molding sand is significant for increasing/decreasing the rate of thermoplastic deformations following the heating of samples only if the molding sand includes binders with a molar module of between 3.0 to 3.4. For molding sand with binders with molar modules from 2.0 to 2.5, it was established that this is excessively susceptible to thermoplastic deformation.

 

Downloads

Download data is not yet available.

Author Biography

  • Mateusz Stachowicz, Wroclaw University of Technology
    Department of Foundry Engineering, Plastics and Automation, PhD

References

Lewandowski J.L. (1997). Tworzywa na formy odlewnicze. Kraków: Wydawnictwo Akapit.

Szreniawski J. (1968). Piaskowe formy odlewnicze. Warszawa: Wydawnictwa Naukowo-Techniczne.

Mocek J., Zych J., Chojecki A. (2004). Study of erosion phe¬nomena in sand moulds poured with cast iron. International Journal of Cast Metals Research, 17(1), 47–50.

Zych J., Mocek J. (2002). Zjawisko erozji w formach wykony¬wanych z mas ze spoiwami chemicznymi. Archives of Foundry, 2(3), 155–162.

Biernacki R., Perzyk M., Kozłowski J. (2006). Modelowanie rozkładu stopnia zagęszczenia masy formierskiej z wykorzystaniem systemów uczących się. Archiwum Odlewnictwa, 6(18), 477–482.

Gierek A. (1968). Teoretyczne podstawy określania wielko¬ści energii zagęszczania mas formierskich oraz jej wpływ na niektóre własności form odlewniczych.

Mechanika, z. 33, Gli¬wice: Wydawnictwo Politechniki Śląskiej, zeszyt naukowy nr 215.

Mocek J. (2003). Proces erozji form piaskowych ze spo¬iwem-szkłem wodnym. Archives of Foundry, 3(10), 23–30.

Zych J., Mocek J. (2015). Destruction of moulding sands with chemical binders caused by the thermal radiation of liquid metal. Archives of Foundry Engineering, 15(4), 95–100.

Jamrozowicz Ł., Zych J., Kolczyk J., Wróblewski D. (2014). Rola kształtu powierzchni formy w procesie wysychania wybranych powłok ochronnych. Archives of Foundry Engi¬neering, 14(spec. iss. 2), 39–44.

Liu F.C., Fan Z.T., Liu X., Huang Y., Jiang P. (2016). Effect of surface coating strengthening on humidity resistance of sodium silicate bonded sand cured by microwave heating. Materials and Manufacturing Processes, 31(12), 1639–1642.

Jakubski J., Dobosz S.M. (2007). The thermal deformation of core and moulding sands according to the hot distortion pa¬rameter investigations. Archives of Metallurgy and Materials, 7(52), 421–427.

Morgan D., Fashman E.W. (1975). The BCIRA hot distortion tester for quality in production of chemically bonded sands. AFS Transaction, 75(91), 73–80.

Rodriguez J., Keil M., Ramrattan S., Krysiak M.B. (1998). In¬dustry and academia collaboration for a thermal distortion tester for sand-binder systems. In: Proceedingsof the 1998 Annual Conference Seattle, Washington. American Society for Engineering Education.

Ignaszak Z., Prunier J.B. (2013). Synergy of practical knowl¬edge of moulding sands reclamation in heavy casting foundry of iron alloys. Archives of Foundry Engineering, 13(3), 30–36.

Fox J.T., Cannon F.S., Brown N.R., Huang H., Furness J. (2012). Comparison of a new, green foundry binder with conven¬tional foundry binders. International Journal of Adhesion & Adhesives, 43, 38–45.

Dobosz S.M., Gieniec A. (2002). Wpływ rodzaju osnowy na zjawiska wysokotemperaturowe w masach rdzeniowych. Archives of Foundry, 2(2), 33–38.

Jakubski J., Dobosz S.M., Jelinek P. (2005). The influence of the protective coating type on thermal deformation of casting cores. Archives of Foundry, 5(5), 164–169.

Major-Gabryś K., Grabarczyk A., Dobosz S.M., Drożyński D. (2016). Wpływ dodatku materiału biodegradowalnego jako komponentu dwuskładnikowego spoiwa odlewniczych mas formierskich i rdzeniowych na właściwości spoiwa oraz mas z jego zastosowaniem Prace Instytutu Odlewnictwa, 16(4), 391–399.

Wildhirt E., Jakubski J., Sapińska M., Sitko S. (2017). Impact of penetration depth of protective coating on thermal defor¬mation of masses determined by the hot distortion parameter. Prace Instytutu Odlewnictwa, 56(1), 51–57.

Jelinek P., Polzin H. (2003). Strukturuntersuchungen und Festigkeitseigenschaften von Natrium-Silikat-Bindern. Giesserei-Praxis, 2, 51–60.

Stachowicz M., Granat K., Pałyga Ł. (2016). The effect of wet¬ting agent on the parameters of dry moulding silica sands bonded with sodium water glass.

Prace Instytutu Odlewnictwa, 56(1), 43–55.

Stachowicz M., Granat K., Nowak D. (2011). Application of mi¬crowaves for innovative hardening of environment-friendly water-glass moulding sands used in manufacture of cast-steel castings. Archives of Civil and Mechanical Engineering, 11(1), 209–219.

Stachowicz M. (2016). Effect of sand base grade and density of moulding sands with sodium silicate on effectiveness of ab¬sorbing microwaves. Archives of Foundry Engineering, 16(3), 103–108.

DMA Hot-Distortion tester for bonded sands – Multiserw- -Morek instruction manual 2017.

Kracek F.C. (1930). The System Sodium Oxide-Silica. The Jour¬nal of Physical Chemistry, 34(7), 1583–1598.

Ryś M. (2007). Investigation of Thermodynamic Properties of Alkali Metals in Oxide Systems Relevant to Coal Slags. Unpublished engineering thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen, Aachen, Germany.

Stachowicz M., Granat K., Nowak D. (2011). Influence of water-glass grade and quantity on residual strength of micro¬wave-hardened moulding sands. Pt. 2. Archives of Foundry Engineering, 11(2), 143–148.

Zych J. (2005). Rola zagęszczania w technologii formy opartej na masach ze szkłem wodnym i spoiwami organicznymi. Przegląd Odlewnictwa, 55(2), 88–97.

Stachowicz M. (2017). The role of the densification of moulding sands with inorganic binders in the modeling of their strength obtained after microwave hardening. Prace Instytutu Odlewnictwa, 57(2), 103–113.

Stachowicz M., Granat K., Nowak D. (2011). Influence of wa¬ter-glass grade and quantity on residual strength of micro¬wave-hardened moulding sands. Pt. 1. Archives of Foundry Engineering, 11(1), 93–98.

Downloads

Published

2017-11-09

Issue

Section

Articles

How to Cite

Impact of Density Degree and Grade of Inorganic Binder on Behavior of Molding Sand at High Temperature. (2017). Journal of Casting & Materials Engineering, 1(3), 64. https://doi.org/10.7494/jcme.2017.1.3.64