Calculation of Assimilation Process of Non-metallic Inclusions by Slag

Dorota Kalisz

Abstract


This paper presents the results of calculating the phenomenon of the absorption of non-metallic precipitates in steel by slag. Calculations are made for the forces acting on the non-metallic particles in steel during the flow-out into the slag, depending on the particle radius and physicochemical properties of the liquid steel and slag. An analysis of the calculation results of capillary force acting on a particle in the vicinity of the steel-slag interface at changing surface energy values between the precipitates and slag shows that capillary force depends on the interfacial tension between the precipitates and slag only to a small degree.


Full Text:

PDF

References


Bouris D., Bergeles G. (1998). Investigations of Inclusion Re-entrainment from the Steel-Slag Interface. Metallurgical and Materials Transactions B, 29B, 641–649.

Strandh J., Nakajima K., Eriksson R., Jonsson P. (2005). A mathematical model to study liquid inclusion behavior at the steel-slag interface. ISIJ International, 45(12), 1838–1847.

Sangguan D., Ahuja S., Stefanescu D.M. (1992). An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface. Metallurgical and Materials Transactions A, 23A, 669–680.

Stefanescu, D.M., Dhindaw, B.K., Kacar, S.A., Moitra A. (1988). Behavior of ceramic particles at the solid – liquid metal interface in metal matrix composites. Metallurgical and Materials Transactions A., 11(9A), 2847–2855.

Mukai K., Zeze M. (2003). Motion of fine particles under interfacial tension gradient in relation to continuous casting process. Steel Research, 74(3), 131–138.

Shibata H., Yoshinaga H., Yin S., Emi T., Suzuki M. (1998). In-situ observation of engulfment and pushing of nonmetallic inclusions in steel melt by advancing melt/solid interface. ISIJ International, 38, 149–156.

Stefanescu D.M., Phalnikar R.V., Pang H., Ahuja S., Dhin-daw B.K. (1995). A coupled force field – thermal field analytical model for the evaluation of the critical velocity for particle engulfment. ISIJ International, 35, 700–707.

Slovic Z., Nedejkovic L.J., Raić K., Odanović Z. (2012). Relationship between the common optical basisity models and sulphide capicities of CaO–Al2O3–SiO2–MgO slag. Kovove Materialy, 50(3), 185–192.

Kalisz D. (2013). Termodynamiczna charakterystyka powstawania fazy niemetalicznej w ciekłej stali. Kraków: Akapit.

Kalandyk B., Wojtal W. (2011). Effects of steel – applied for large – dimension castings for the power engineering – refining in the ladle – furnace. Archives of Metallurgy and Materials, 58(3), 779–783.

Kalisz D. (2014). Interaction of non-metallic inclusion particles with advancing solidification front. Archives of Metallurgy and Materials, 59(2), 493–500.

Żak P.L., Kalisz D., Lelito J., Szucki M., Gracz B., Suchy J.S. (2015). Modeling of non-metallic particles motion process in foundry alloys. Metallurgija, 54(2), 357–360.

Iwanciw J., Podorska D., Wypartowicz J. (2011). Simulation of oxygen and nitro gen removal from steel by means of titanium and aluminium. Archives of Metallurgy and Materials, 56(3), 635–644.

Moser Z., Gąsior A., Dębski J., Pstruś J. (2012). Surdat 2, Data-base of Physicochemical Proporties of Selected Solders. Krakow: Polish Academy of Sciences, OREKOP.

Szucki M., Kalisz D., Lelito J., Żak P.L., Suchy J.S., Krajewski K.W. (2015). Modelling of the crystallization front – particles interactions in ZnAl/(SiC)p composites. Metallurgija, 54(2), 375–378.




DOI: https://doi.org/10.7494/jcme.2017.1.2.43

Refbacks

  • There are currently no refbacks.