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ABSTRACT

This article presents attempts at automating a control system to reduce temperature scatter on the foil of a foil bearing.
The control system reads the temperatures at six circumferential locations of the bearing’s foil and distributes con-
trol currents to the thermoelectric modules integrated into the bearing’s bushing. Three basic approaches have been
proposed and tested: 1) a simple hot-spot tracking algorithm assigning predefined current values to the modules
closest to the hot-spot location; 2) a tracking algorithm reducing abrupt changes in the control currents and, in
effect, the local heat flux distribution; and 3) a tracking algorithm enhanced with a PID controller. The proposed
controller has been implemented and compared to the performance of a temperature controller that does not have
tracking capabilities. The implemented control strategies have proven the feasibility of temperature scatter reduction
inside the investigated bearing. In most test cases, the instantaneous gradient reduction exceeded 50% (reaching 63%
at its best).
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SYSTEM PRZECIWDZIALAJACY POWSTAWANIU NADMIERNEGO GRADIENTU TERMPERATURY
W LOZYSKACH FOLIOWYCH

Artykut opisuje podjete przez autorow proby automatyzacji systemu regulacji przeciwdziatajgcego powstawaniu wyso-
kiego gradientu temperatury w tozyskach foliowych w warunkach zmiennego obciqzenia tych {fozysk. Zbudowany sys-
tem bazuje na szeSciopunktowym pomiarze temperatury w rownoodleglych pozycjach na obwodzie tozyska, na podsta-
wie ktorych okresla wartosci pradow zasilajgcych zabudowane w panwi tozyska moduly termoelektryczne. W pracy
opisano wyniki eksperymentow uzyskane dla trzech roznych sposobow wyznaczania prgdow sterujgcych: 1) orientacje
z gory ustalonego rozktadu prqdow okresla prosty algorytm sledzqcy pozycje wystgpienia maksymalnej temperatury na
obwodzie tozyska; 2) algorytm Sledzqcy jw. z rozkiadem prgdow zmodyfikowanym tak, aby zmiana pozycji obwodowej
srodka tego rozkladu nie powodowata skokowych zmian w prgdach sterujgcych poszczegolnych modutow; 3) algorytm
Sledzqcy jw. z dotgczonym regulatorem PID. Efekty regulacji z wykorzystaniem zaimplementowanego regulatora po-
rownano do prostego ukladu regulacji, ktory nie sledzi zmian kierunku wystgpienia temperatury maksymalnej na ob-
wodzie tozyska. W artykule wykazano skutecznosé¢ opracowanego rozwiqzania, ktore w wigkszosci zbadanych przypad-
kow testowych prowadzito do redukcji gradientu o min. 50% (najlepszy uzyskany wynik to 63%).

Stowa kluczowe: termoelektryczne systemy regulacji temperatury, tozyska foliowe, adaptacyjne systemy sterowania

1. INTRODUCTION

Gas foil bearings (GFB) have recently started to be used
in high-speed and lightly loaded turbomachinery. Despite
their numerous advantages, GFBs suffer from uneven
thermal growth in the composing elements and develop-
ing thermal gradients. The latter is most dangerous, as it
leads to usually unexpected bearing’s failure (Dykas,
Howard 2008).

The heat conduction in a bearing is limited to the radial
direction due to the small contact area between the top foil,
bump foil, and bushing. Overheating in the foils may lead
to bearing failure — the higher the temperature, the lower
the load capacity and stiffness of a bearing (San Andrés et al.
2011). As most of the generated heat is transferred to the
shaft, the temperature expansion rate of bearing compo-

nents differ significantly, which can eventually lead to
seizure (Ryu, San Andrés 2013). Local disturbances in
heat flux distribution may cause temperature gradients to
develop. Axial and radial temperature gradients can make
a foil wrap on its edges; as a result, even a small gradient
may restrict air flow between the foils. When air leak-
ages are restrained, bearing temperatures rise. Bearing
elements continue to expand, making this process self-
-perpetuating. At a critical point, clearance is reduced to
zero and may cause the shaft to weld to the foil, which is
the equivalent of bearing failure (Radil, Batcho 2010).

Thermal gradients are especially dangerous because
they may lead a stable GFB to failure in the cases of rapid
load or speed changes. This problem is a threat to thin-
-walled bearings or highly loaded bearings when exposed
to shock loads.
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A standard approach to the thermal management of
GFB is forcing air to flow either through the hollow shaft
or foil bumps (Radil et al. 2008). The use of thermoelec-
tric modules (TEM) was firstly proposed in (Roemer et al.
2015) and further investigated in (Lubieniecki et al. 2016).
The performed experiments proved that TEMs could be
effectively used to reduce a circumferential thermal gra-
dient from developing in GFBs.

The initially adopted approach required numerical sim-
ulations to be performed in order to assign control currents
to the individual TEM. Although this approach proved to
be successful, its practicality may be easily questioned.
This paper presents a step towards the control process au-
tomation that allows us to skip power- and time-consum-
ing numerical simulations in the previously-used model-
-based approach. In the proposed control scheme, the
TEMS’ currents are determined by a closed-loop control-
ler to keep the circumferential gradient as low as possible
(and also when a bearing’s load distribution changes).

2. THE PROBLEM STATEMENT

In this paper, TEMs (RMT 1MDL06-024-15) are used to
make the temperature distribution (scatter) on a bear-
ing’s foil uniform by inducing local heat flows rather than
lowering the global bearing’s temperature. An array of
nine TEMs (on the circumference) per four (along the
axis) were integrated in the bearing bushing to provide
flexibility and high spatial resolution in the hot-spot re-

moval. The TEMs and foils are separated by a 2-mm-thick
ring to provide the necessary support for the foils and limit
operational mechanical stress (tensile and shear) on the
modules. The thermocouples are spaced around the bush-
ing; there are 21 points where thermocouples may be in-
stalled. The inspection holes are spaced evenly (every
120°) at each position, providing access to the top (three
points along the axis) and bump foil (four points along
the axis). The number of actually-used sensors was de-
termined in the course of the experiments. A detailed
description of the addressed bearing construction can be
found in (Lubieniecki et al. 2016). The overall view of
the experimental setup is shown in Figure 1. The bearing
assembly with an electric spindle (A) is placed on a heavy
support. However, in the course of the experiment, the
spindle was used as a support only; the experiments were
conducted on the still bearing. The NI sinking outputs
modules (B) act like low-side switches controlling the cur-
rent flowing to the TEMs from the switching power sup-
ply (C). The main control loop is executed on the NI PXI
platform (invisible on the picture), and the operator can
monitor the whole process through the LabView environ-
ment (D). A more-detailed description of the hardware
used (B, C, D) is provided in the next chapter.

Although the prototype system was implemented in
a general-purpose platform intended for the fast proto-
typing of the control systems, the main consideration was
to propose a control scheme that is simple, reliable, and
easy to implement in a universal industrial controller.

Fig. 1. Overall view of experimental setup: A — bearing assembly mounted on support; B — sinking I/O delivering control
currents to TEMs; C — power supply; D — operator interface (accessible through LabView environment)
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Three basic approaches have been proposed and test-
ed: a simple hot-spot tracking algorithm (assigning
pre-defined current values to the modules closest to the
hot-spot location); a tracking algorithm (reducing abrupt
changes in the control currents and, in effect, the local
heat flux distribution); and a tracking algorithm (en-
hanced with a PID controller).

3. CONTROL SYSTEM IMPLEMENTATION

The control system has been implemented within a general-
-purpose National Instruments measurement and auto-
mation platform based on a rugged PC with a modular
expansion case (Fig. 2). The programmable digital out-
puts, with a capability of sinking up to 1.2 A per channel
(up to 2 A when all channels are not in use), control the
individual currents of the interconnected TEMs.

The host computer acts only as a user interface and
data logger. The operator can trigger the execution of
the control scheme but cannot modify the controller pa-
rameters while it is in operation. A high-level description
of the implemented control scheme is presented as
a block diagram in Figure 3.

The main program has been divided into three parts,
executed in parallel. One sub-routine transmits data be-
tween the host computer and remote system (left branch
in the diagram). The other sub-routine is responsible for
conditioning the signals provided by the thermocouples
(right branch in the diagram). In the main loop, control

currents for the individual TEM are calculated and then
sent to the FPGA-based controller. It is the main loop
where the tracking algorithm is sealed and (optionally)
the PID controller is implemented. The control-current
distribution can also be set manually. The TEMs can be
arbitrarily grouped together so that each TEM in a group
receives the same control signal.

As found during the initial trials, the resultant temper-
ature distribution inside a bearing depends not only on
the current, but also on the prior values of the control
currents. This observation was made for a steady heat
influx (i.e., stable operating conditions). Hence, without
performing the numerical simulations or using the track-
ing algorithm, it is impossible to predict the cooling
effects when the current setup is arbitrarily changed.

To adapt to the changing temperature distribution in
a bearing, a simple algorithm for tracking the maximum
temperature’s location was implemented (Fig. 4). In the
case of the tracking circumferential gradient only,
the thermocouple readings are grouped and averaged
along the bearing axis. The known position of the thermo-
couples unambiguously describes the hot-spot location.
Due to the unreliable measurement (contact issues) on
the top foil, only the bump foil measurements were used
in this research.

The PID controller sets the currents prescribed to the
modules closest to the hot-spot based on the measured
temperature scatter (maximum difference noticed). The
controller parameters were fine-tuned by trial and error.
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Fig. 2. Scheme of control system with interconnections between its functional elements.
Software modules executed on each platform are shown in underlying scheme
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Fig. 3. Main control loop executed on remote platform (NI PXI)
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Fig. 4. Tested hot-spot tracking algorithm

4. EXPERIMENTAL VERIFICATION

During the experiments, attempts to reduce only the cir-
cumferential gradient were undertaken; hence, the four
Peltier modules at the same circumferential position were
grouped from the software interface, and controlled with
the same PWM fill factor. To limit the loss of efficiency due
to current ripples, the proper PWM frequency must be used.

At the same time the PWM frequency should be kept
possibly high to minimize thermal expansion stresses and
repetitive temperature changes, as they can lead to fa-
tigue and significantly increase the risk of module failure.
When operated appropriately, the TEM’s MTBF of
100,000-300,000 h is achievable. It was experimentally
determined that, for the purpose of the application, the
frequency of 1 kHz is enough to satisfy all of the demands
mentioned above.

The maximum PWM fill factor used was 37%, which
corresponds to a current value of 1 A. Higher PWM fill
factors led to a deterioration in the achieved results due to
excessive Joule’s heat generation. The adopted TEM’s and
the thermocouple names are shown in Figure 5. As the axial
gradient in considered loadcase is insignificant, the num-
ber of inputs to the control system was reduced to only six
(temperature readings at the same circumferential posi-
tion were averaged). A cartridge heater was used to invoke
the uneven temperature distribution inside a bearing by
choosing one of the eccentrically disposed slots (I-V: slot V
was used during the tests). The heat supplied to the bear-
ing was at a level of 1 W for each performed test.
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TEC position numbering
along the bearing axis 1

Fig. 5. Foil bearing assembly with adopted naming convention for thermocouples, TEM, and heater slots.
Actual position of shaft inside bearing during tests might be slightly different than shown

Three distinct test configurations were used; i.e., man-
ual setting of PWM fill factor, automatic tracking of
hot-spot location with constant PWM fill factor, and auto-
matic tracking of hot-spot location with PWM fill adjust-
ed by the PID controller.

First test configuration

The first test assumed a PWM fill set manually to 37%
and 30% on Rows 1 and 9 (a total of 8 modules were acti-
vated). The maximum scatter reduction acquired during
the test was 55%, from an initial 0.56 °C to 0.25 °C (Fig. 6).
However, the cooling effect turned out to be unstable.
Both the gradient and temperatures rose continuously
during the test.
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It can be observed that the thermocouples furthest
from the heater (locations T3-T5) were the least influ-
enced. As the outer bearing bushing is divided into three
thermally insulated components (and due to the slow heat
removal rate at the outer surface of the bearing), the con-
trol effect was unsteady. The heat expelled on the hot side
of the active modules could be conducted through inac-
tive modules 2, 3, 7, and 8 heating up the foils. Similar
behavior was not observed when more modules were acti-
vated at the same time (Lubieniecki et al. 2016).

The steady-state value of the temperature scatter value
was not achieved. After turning off the modules, the
regeneration phase can be clearly identified at which
temperatures temporarily rise above the initially observ-
ed value.

b)

TC6 N TC2

e85 N R

T =t Initial

Tca

=®= Min. scatter

Fig. 6. The results obtained for the first investigated configuration: a) time plots of temperatures and scatter recorded during
test (no tracking); b) geometrical temperature distribution on bearing circumference.
Initial temperature values (orange) are compared to values for maximum achievable scatter reduction (blue)
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Second test configuration

During the performed test, the tracking algorithm that fol-
lows the changes in temperature distribution was used to
provide currents only for the TEMs closest to the host-spot
location. During this test, the maximum PWM fill was set
to 30%, which corresponds to a current value of 0.8 A.

A gradient reduction of 63% was observed (from an
initial 0.56 °C to 0.21 °C - see Fig. 7). The temperature
scatter seems to be stable over time; however, its fluctua-
tions are noticeable. The overall temperature rise of the
bearing is observable (as previously reported in the first
test configuration).

Third test configuration

In the third performed test, the PWM fill was controlled
within a range of 0 to 37% by a single PID controller
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assigning the currents to the TEM closest to the hot-spot
locations. Regulator gains were chosen by trial and error.
The test was performed with the regulator parameters
set as follows: K, = 400; K; = 0.05. The achieved gra-
dient reduction was 53% (from an initial 1.08 °C to 0.51 °C
—see Fig. 8).

The cooling effect can be observed instantly, and the
temperature rise during the regeneration phase is not as
high as previously noted due to the PID controller (Fig. 8).
Compared to the second test configuration, the observed
scatter fluctuations are less prominent. The difference is
especially visible in the fluctuation frequency. Additional
measurement were taken with the TEMs being switched
repeatedly from active to inactive to assess the cooling
effect repeatability. The instantaneous effect is compar-
able in terms of scatter reduction, although an overall rise
in temperature is visible. The control signals (PWM fill
factors) for individual modules can be seen in Figure 9b.
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Fig. 7. The results obtained for the second investigated configuration: a) time plots of temperatures and scatter recorded
during test (with tracking algorithm); b) geometrical temperature distribution on bearing circumference. Initial temperature
values (orange) are compared to values for maximum achievable scatter reduction (blue)
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Fig. 8. Time plots of temperatures and scatter recorded during test (with tracking algorithm and PID controller)
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Fig. 9. The results obtained for the third investigated configuration: a) time plots of temperatures and scatter recorded
during test (with tracking algorithm and PID controller); b) corresponding PWM fill values [%]
prescribed to modules grouped in Rows 1-9

Even though the cartridge heater remained in the same
slot, it is clearly visible that the hottest point changed
locations many times within the observation period.

5. SUMMARY

The implemented control strategies have proven feasible
in terms of the temperature scatter reduction inside an
investigated bearing. In most test cases, the instantaneous
gradient reduction exceeded 50%, and the best-achieved
reduction was 63%.

The test conditions might be considered disadvanta-
geous, as the heat removal rate from the bushing was very
slow; this is also due to the fact that a steady bearing does
not remove heat through the air leakages. This was iden-
tified as the reason for the unstable scatter obtained in
the first test configuration. The overall temperature of the
bearing assembly rose during the tests; this trend, how-
ever, was not considered detrimental to the bearing’s
thermal stability, especially when accompanied by a re-
duction in temperature scatter.

The proposed automated control system might be
easily transferred to standard industrial hardware due to
its simplicity. The automatic hot-spot tracking system
worked efficiently, providing stable scatter reduction.
Different groups of modules were launched repeatedly,
even though the cartridge heater did not change its
location. In effect, the control algorithm dealt efficiently
with the local heat flux disturbances caused by the work-
ing TEMs.

Future research will cover testing the bearing under
normal operating conditions, when naturally developing
thermal gradients appear.
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