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SUMMARY

Rotating machines are often described using linear methods with acceptable accuracy. Some malfunctions, howe-
ver, are of non-linear nature. The most common examples of those malfunctions are loose bearings and rotor rubs.
Accurate detection and identification of such malfunctions requires more accurate methods. One of such
methods can be NARX — nonlinear systems identification. This method is based on neural networks approach
and is especially efficient in modeling and diagnostics of nonlinear systems. Application of this method leads to
shorter and less costly tuning of the model to the object, which is the key requirement when practical application
of a method is concerned. The paper presents how NARX can be applied for modeling of rotating machinery
malfunctions. Idea of the diagnostic algorithm based on such modeling is presented. The proposed algorithm was
verified during research on a specialized test rig, which can generate vibration signals. The paper also presents
results of an application of the NARX method for data collected at a wind turbine.
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ZASTOSOWANIE MODELU NARX W DIAGNOSTYCE MASZYN WIRNIKOWYCH

Maszyny wirnikowe sq czesto opisywane przy uzyciu metod liniowych z zadowalajqcq dokladnosciq. Niektore
awarie majq jednak charakter nieliniowy; jako przyklad mozna wymieni¢ m.in. takie usterki jak luzne lozyska
i przytarcia wirnika. Precyzyjne wykrywanie i identyfikacia ww. usterek wymaga bardziej dokladnych metod.
Jedng z takich metod moze by¢ NARX — model umozliwiajqcy nieliniowq identyfikacje systemow. Metoda ta opiera
sie na sieciach neuronowych i jest szczegolnie skuteczna w zakresie modelowania i diagnostyki uktadow nielinio-
wych. Zastosowanie tej metody prowadzi do krotszego i mniej kosztownego dostrajania modelu do obiektu, co jest
kluczowym wymogiem w przypadku praktycznego zastosowania tej metody w diagnostyce. W artykule przedsta-
wiono, jak modele NARX mogq by¢ stosowane do modelowania awarii maszyn wirnikowych, a takze idee¢ algoryt-
mu diagnostycznego z wykorzystaniem takiego modelowania. Proponowany algorytm zostal zweryfikowany pod-
czas badan na specjalnym stanowisku badawczym, ktore umozliwia generowanie sygnalow drganiowych oraz
wprowadzanie symulowanych uszkodzen. W artykule przedstawiono rowniez wyniki zastosowania metody NARX
dla danych zarejestrowanych w elektrowni wiatrowej.

Stowa kluczowe: model NARX, diagnostyka maszyn wirnikowych, wykrywanie uszkodzen turbin wiatrowych

1. INTRODUCTION Sanz et al. 2007). A rotor and its support consisting of hydro-
dynamic bearings, formulate a highly nonlinear closed-loop
system (Kraemer 1993). Additionally, several faults have
inherently nonlinear nature. Good examples are mechanical
looseness or rotor rub. Such problems were also investi-
gated and solved in the industrial practice. An interesting
survey of rotating machinery malfunctions can be found in
(Eisenmann 1997, Kicinski 2005).

In general case, to model a rotating object (with or without
malfunctions), the system input may be defined as forces
relating to rotor imperfections such as unbalance or over-
loads connected to external forces acting upon the shaft

Nowadays rotating machines play an important role in mod-
ern power plants. Most industrial processes where energy is
processed are based on rotating machinery. Thus, it is in-
creasingly important to maintain those machines in healthy
technical state. Main drivers for final users of rotating ma-
chines are:

— avoidance of catastrophic failures,
— decrease of maintenance costs,
— increase of availability.

To achieve above goal new maintenance and health mo-

nitoring techniques are considered. Theoretical research is
performed since decades, starting from a simplified, linear
rotor model. With advances in rotor-dynamic research new
processes were identified and described. Extensive review of
theoretical description of rotordynamic phenomena can be
found in (Grybos 1994, Muszynska 2005). In many cases
those phenomena are of non-linear nature (Kicinski 2004,

(Barszcz et al. 2004). The state vector includes velocities and
displacements of nodes, where lumped physical models are
focused. The equations describing system dynamics
strongly depend on parameters, mainly on the rotational
speed Q. Parameters of an applied model for diagnostics
to be identified from measured data should be very sensitive
to the symptoms of malfunctions of rotating machinery.
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ROTOR

V(i) = f(v,ut,Q)

z(t)=g(v,u,1,Q)

k(v,Q)

SUPPORT

Fig. 1. A block scheme of rotor and support equations affected by faults in the form of state-space equations

The problem of the fault and system dynamics description
(Fig. 1) of the supported rotors can be formulated based
on nonlinear state-space equations as follows (Barszcz
etal. 2004):

V() = f (&, v(0),u(®), (1), ficu (©),0)

20) = (900 90). £, 0).0) (1)
where:
t — continuous time domain,
z(f) — output signal vector,
u(f) — input signal vector,
V() — state vector,
1.0, fk’u(t) — faults vectors,
w(f) — disturbances vector affecting on states,
0 — model parameters.

The parameters of the vector 0 are physically significant
and their changes correspond to faults (malfunctions) to be
detected. A major problem with the rotor-dynamic system
modeling is that equations strongly depend on parameters,
especially the rotational speed.

The general problem presented above is often approached
using linear system identification method. In many cases
such an approach yields good results, allowing detection and
identification of machinery faults. In some cases, linearization
of a nonlinear model can also bring useful results (Barszcz
2005). In other cases, as mentioned previously, nonlinearities
are inherent and linear models can be only used in a limited
scope.

Mechanical looseness is an inherently nonlinear phe-
nomenon. It is encountered when a stationary machine part
(e.g. bearing pedestal) becomes loose. In such a case, the
effective rotor stiffness is reduced. This often results in the
rotor resonance shifting to a frequency, which is an even
multiple (or fixed fraction) of rotating speed. Additionally,
due to mechanical looseness synchronous motion of a part
may become truncated, e.g. due to hammering of parts. Trun-
cated sine waves exhibit a series of running speed harmonics.
Those harmonics, in turn may induce resonances
of other parts of the machine. Examples of practical cases
of looseness can be found in (Eisenmann 1997). Proposal of

analytical model of this malfunction was given in (Muszyns-
ka 2005). The model of the rotor lateral vibration mode with
additional terms, due to coupling with the stationary part can
be presented as follows:

MC+(D,, +vD;)C+KC+VvK;(C—c)+

+K yy C cos 2y — MC@* = )
= mrQ? cos(Qt +8— ) + Pcos(Y— )
MCy? +(D,, +vD  )CPy - K yy C* sin 2y = 2MCCy =
©)
= C[mrQ? sin(Qt + 8 — ) + Psin(y— )]+ v(C + R, )F,
where:
1 if |W| 2c
v =
0 if |W| <c
M - rotor/support modal mass,
Kyy = (Ky— K))/2 where: Ky, K, — bearings lateral
stiffness,
C — polar coordinates,
D — rotor/support modal damping,

Df — rotor radial damping,
Kf — rotor radial stiffness,

m — unbalance mass,
P — amplitude of radial force applied to the rotor,
Q — rotor rotational speed,
Y — angular orientation of force P,
VY — polar coordinates,
r — unbalance radius,
0 — unbalance angular location,
¢ — bearing radial clearance,
R, — rotor bearing radius,
F, — tangential force at the rotor/stator contact.

The main assumption of the model is discontinuous (and
thus nonlinear) change of the stiffness. The same model can
be applied for looseness and for rubbing. In the first case,
change of stiffness is caused by pedestal/surface contact.
In the latter one — by rotor/stator contact. In some systems,
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when stiffness (and sometimes damping) varies between
extreme discrete values, the system given in (2) and (3) may
become chaotic. Basics of chaotic motion are described in
(Lorenz 1963). The suspended rotor with looseness or rub is
one of the examples, where such a chaotic motion can take
place. As shown in (Goldman and Muszynska 1994), the con-
dition for such behavior is the discontinuous nonlinearity of
the system, and its high sensitivity to deterministic external
excitation. To model such nonlinear objects, neural networks
(NN) can be applied.

2. FUNDAMENTALS OF NARX MODEL

The most general structure of nonlinear ‘black-box’ model is
a neural input-output model (Norgaard 2000). It is recom-
mended for modeling cases without a priori knowledge of
structure and its nonlinearities. The neural network (NN) is
a set of parameters called weights and biases. Various archi-
tectures of neural networks are described (Korbicz et al.
1994). The most often applied network structure is the multi-
layer perceptron (MLP). An example of structure of two
layers MPL is presented in Figure 2.

Mathematical description of this architecture of the NN
can be given by the expression:

nH n®
ﬁ(t)ZE'[ZWi,jfj [zWi,z<Pz+Wj,o ]"’Wi,o} Q)
j=1 I=1
where:
(@) predicted output vector,
¢ — input vector,
nH — number of neurons in hidden layer of NN,
n® — number of NN inputs,
f — activation function,
— weights of the NN,
— biases of the NN.

The predictor y(¢) consists of the past outputs and/or
the past inputs and predicted output where O denotes the
parameter vector, which contains all the adjustable parame-
ters of a network. Here, biases were presented as weights
with second index 0. Usually sigmoid/tansig activation func-
tions are applied in the hidden layer neurons, whereas linear
— in the output layer. The structure given by equation (4) is
considered. The weights are adjusted during the training
process based on a training set of inputs and outputs. The
learning criterion is the least mean square error between
the given output and the predicted output. The formula for
prediction error is given by equation:

PE=—1 % [y -3 | [y(©)-5(|0)] ©)
2N r=1
where:
N — number of neurons,
y(f) — output vector,
y(t|0) — predicted output vector,
0 — parameters vector.

The weights are found according to the learning algo-
rithm. The basic one is based on the back-propagation. De-
tailed description of this algorithm and other ones are given
in e.g. (Kicifiski 2004). The multi-layer perceptron can be
applied to identify or model a nonlinear system dynamic. The
structure, which will be investigated here, is referred to as
NARX — Nonlinear Auto Regressive model with eXogenous
input (6) and (7). The NARX model (Barszcz et al. 2006,
Basso et al.2005, Bednarz et al. 2005, 2006, 2007, Chen and
Bilings 1989, Leonartis and Billings 1985a, 1985, Piroddi
and Spinelli 2003) represents a wide class of non-linear sys-
tems and many well-known non-linear input-output models

Fig. 2. The structure of 2 layer Multi Layer Perceptron
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(Jing et al. 2007, Kerschen et al. 2006, Thouverez and Jeze-
quel 1996) are specific cases of this model.

M
yO)= 3, ym(®) ©)

m=1

m K
ym(t):z z Cp,g (K15 oer Kpyg)X

p=0 Kk ’kp+q

@)
p ptq
x[Ty@=k) [T ut—k)
=

i=p+1

where:
¥,,(t) — mth-order output of system,
k=1,..,K,

K K K
2 =2 X O

T =

For such a structure, we can define regression vector and
predictor as:

Q1) = [t =1) . y(t =g Ju(t =) oot =y =y + 1] )

y(|6)=3(t]-1,6) )

The regression vector is used as the input to the neural
network. After successful learning process, the network is
capable to approximate behavior of the system.

Application of such a network for diagnostics of rotating
machinery needs to solve two problems:

— unavailability of input signal,
— interpretation of results.

The input signals in rotating machinery are the forces
loading on the structure. The majority of this force is the
rotor unbalance force. After being transmitted through the
object it produces vibrations, which are observed as system
outputs. The rotor unbalance force is immeasurable and —
even worse — it is nonstationary, for it depends on rotational
speed, rotor temperature. In such a case either no input signal
will be used, resulting in degradation of quality of the model,
or another signal can be used as the input. In this approach
we propose to use one of vibration signals or keyphasor as
the input signal. In such an approach the NARX network will
approximate a nonlinear filter, transforming vibration signal
from one channel to the other one. Interpretation of results
causes problems, because NN parameters (i.e. weights) do
not have any physical interpretation. In the presented ap-
proach the output from the network is the predicted vibration
signal (or signals, in more general case, but the paper is fo-
cused on one output), so there is no direct information about
any malfunction. We propose to train the network and next
calculate only “distance” between current set of input/out-
put data and the set used to train the network. Good scalar
estimate of this value is normalized sum of squares of predic-
tion errors (NSSE — expressed by equation (10)), when new
data is used to validate the NARX network trained with train-
ing data.

NARX networks are applied for modeling and identifica- 1 N ) T .
tion of dynamic systems (Koscielny 2001, Nalinaksh and NSSE = N —l[y O=9¢ 1] [y©)-9¢[9)]+
Satishkumar 2001, Narenda and Parthasarathy 1990) yielding = (10)
good results. Typical architecture of such application is pre- . 1 ol 46
sented in Figure 3. 2N
Delay
line i
NARX Predicted outpui
Neural network
Delay >
line
Object input ) Object output
d P Object d kN

Fig. 3. The NARX network used for system identification
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Thus, the output will be the set of numbers, showing how
much the current state of the machine differs from selected
reference states known previously. Proposed algorithm was
verified based on the data from a laboratory test rig.

3. LABORATORY TEST RIG

The rotordynamics test rig (Fig. 4) was designed and in-
stalled in Department of Robotics and Mechatronics AGH
University of Science and Technology. The main goal is
development and verification of diagnostic techniques for
rotating machinery.

The rotor — bearing system is assembled on the heavy
steel plate. The rotor is driven by the 1.2 kW AC motor, con-
trolled by the converter. The converter controls the rotation-
al speed set manually or from a PC through a serial link. Va-
rious transient states can be easily tested. The driven system
can consist of one 1200 mm or two 600 mm shafts assembled
on bearings. The rig has exchangeable bearings, rolling and
sliding ones. One of bearing supports can introduce con-
trolled misalignment. Up to few disks can be assembly on
shafts, to introduce static or dynamic unbalance. It is possi-
ble to introduce looseness and rotor rub. The rig is equipped
with rotational speed controller and vibration measurement
system, which consists of:

— keyphaysor,

— 8 vibration displacement eddy-current probes,
— 2 three-axial accelerometers,

— signal conditioning,

— analog input computer board,

— acquisition computer,

— software.

Vibration displacement sensors are installed on pedestals,
two sensors per one (see Fig. 4). This allows to measure shaft
vibration in any position, not only at the bearings. Accelera-
tion sensors are installed on bearing covers. The sampling
frequency initially can be set with the default value of 2 kHz.
Apart of storage of raw vibration data, the measurement sys-
tems calculate following parameters of the vibration signals:

— root mean square,
— peak-peak amplitude,

— amplitude and phase of the first harmonic,
— amplitude and phase of the second harmonic,
— DC value (for eddy-current probes).

Recorded data can be exported for future processing (e.g.
in Matlab environment). It can be also presented in one of
following plots: time trend, waveform, spectrum, cascade,
orbit, Bode, polar. The measurement system is very flexible
and can be easily adapted to the particular experiment. It is
possible to increase the sampling frequency (up to 20 kHz
per channel) or to add more signal analysis procedures, like
other high harmonics, or sub-synchronous components.

4. EXPERIMENTAL RESULTS

The results of proposed health monitoring algorithm tests
are presented. In the first part of chapter the results of detec-
tion of the typical failures (unbalance, misalignment and me-
chanical looseness) in rotating machines by means of NARX
signal models are presented. In the second part of the chapter
the idea of using NARX model for prognosis of mechanical
state of machines is presented. In the last part of chapter the
possibility of using NARX model for blade crack detection is
shown.

4.1. NARX model in failures detection

The goal of the experiment is verification of the algorithm
dedicated to detect typical malfunctions of rotating ma-
chines. The looseness, unbalance and misalignment were
chosen as main malfunctions which can be modeled using
nonlinear approach. To reliably detect such a nonlinear be-
havior, the approach based on NARX neural network, pro-
posed in chapter 2, has been used. The algorithm is applica-
ble to small machines in power generation plants. Thus, it
must fulfill the following requirements:

— the machine has rolling bearings (typical layout of smal-
ler machines like fans and blowers),

— machine rotational speed is not constant,

— vibration is measured with accelerometers installed on
bearing housings and displacement probes installed
along the shaft.

Sensors pedestals

Fig. 4. Design (left) and photograph (right) of the rotordynamic research test rig
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Data processing was performed with Matlab and dedica-
ted toolboxes: System Identification, Neural Network and
Neural Network Based System Identification v. 2.0 (Norgaard
2000). Keyphasor signal (rotating speed) was chosen as the
input to the system. As a test signal a signal from eddy
current sensor (vertical directions) at driven end was chosen
(DEZ). Existing data were divided into separate sets, each
having 2500 samples. Such sets were prepared for all states
of rotating machine: undamaged, with unbalance, misalign-
ment and two cases of loose bearing and for various rotatio-
nal speed. Several attempts to determine the optimum net-
work structure were performed. The analysis was started
from the order of 10 inputs and 10 outputs. The initial network
had 10 neurons in the hidden layer. All neurons in the hidden
layer had hyperbolic tangent activation function. The single
neuron in the output layer had linear activation function.
After NN architecture optimization, the best results have
been obtained for network having order of 3 inputs, 3 outputs
and 5 neurons in the hidden layer. After network optimization
phase, three networks have been trained, each one modeling
dynamics in a different technical state (correct and loose
bearing at driven end (DE) and non-driven end (NDE)).
Those trained NN were later used as reference networks. The
goal of the algorithm is to detect, if the set of currently
acquired data can be classified to one of known states. To
verify this idea, 3 sets of validation data (each one consists
of 5000 input and 5000 output samples), each taken from mea-
surement with different malfunction present, were presented
to each network. The measure of distance between real data
and predicted output was normalized sum of squared predic-
tion error (NSSE). Thus, 9 estimates were obtained for every
channel. The Figure 5 presents results for the channel DEZ.

Prediction error

M Data from undameged
rotor

M Data from loose bearing
at DE position

m Data from loose bearing
at NDE position

No malfunction Loose bearing Loose bearing
DE NDE

Reference network

Fig. 5. Prediction errors produced by three reference networks
for three validation data sets

The graph in Figure 5 shows differences between data
from the same state, for which the network was trained and for
different data. After these tests we have decided to use the
reference network for undamaged rotor for detecting another
malfunctions — unbalance and misalignment. The results of
comparison are shown in Figure 6.

Prediction error

=
o

O R, N W s OV N 0 W

No malfunction

Data from misalignment ~ Datafrom unbalance

Fig. 6. Prediction errors obtained from reference network
(for undamaged structure) for three validation data sets

4.2. Prognosis of health state of rotating machinery
with NARX model

The next step of presented researches was focused on
checking the influence of damage propagation for NSEE va-
lue. The experiment has been carried out for unbalance and
misalignment for three different levels: small, medium and
large. A new NN dedicated for analysis of experiment results
has been introduced. The results of these experiments are
presented in the Figure 7 and 8 for signals from accelerome-
ters and in the Figure 9 and 10 for signals from eddy-current
displacement sensors.

Prediction error

2,5

1,5
n B
0,5
0

No malfunction Datafrom small Data from Data from large
unhalance medium unbalance
unbalance

Fig. 7. Prediction errors obtained from reference network
(for undamaged structure) for three validation data sets

Prediction error

=
=M

Datafrom
medium
misalignment

Data from small
misalignment

No malfunction Data from large

misalignment

Fig. 8. Prediction errors obtained from reference network
(for undamaged structure) for three validation data sets
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Prediction error

3,5

2,5
2
1,5
1

0,5
0 .

No malfunction Datafrom small Data from Datafrom large
unbalance medium unhalance
unhalance

Fig. 9. Prediction errors obtained from reference network
(for undamaged structure) for three validation data sets

Prediction error

10
9
8
7
6
5
4
3
2
;1
0 .
Nomalfunction Datafrom small Datafrom Datafrom large
misalignment medium misalignment

misalignment

Fig. 10. Prediction errors obtained from reference network
(for undamaged structure) for three validation data sets

Experiments results clearly show that NARX models can
be successfully implemented in rotating machinery health
monitoring. Value of prediction error for NARX approach in-
creases for increasing damage. This means that ones can
prognoses estimated time for normal operation of rotating
machinery. Presented results proved applicability and
advantages of NARX models in model based health monito-
ring of rotating machinery.

4.3. Blade crack detection

Blade cracks is one of the most dangerous damage in rotating
machinery (Ortowski 2001) and numerous researches in this

field were done (Oberholster and Heyns 2006, Peng et al.
2007, Smit and Heyns 2002, Stoisser and Audebert 2008).
This chapter concerns detection and identification of turbine
blade cracking by means of the NARX model based damage
detection technique. For the tests described in this chapter
the test rig has been modified by mounting the blades at the
end of the shaft (Fig. 11). Then a crack of a blade was intro-
duced (Fig. 12) by cutting of a blade in central section.

The goal of the experiment was to verify the algorithm for
detecting of blades cracks in turbines. To detect such a dam-
aged which assurance is joined with nonlinear behaviour, the
approach based on NARX NN, proposed in chapter 2, was
chosen.

In the NARX approach data processing was performed in
Matlab and dedicated toolboxes: System Identification,
Neural Network and Neural Network Based System Identifi-
cation v. 2.0. As the input to the system the keyphasor signal
was chosen. Two signals: a signal from eddy current sensor
(vertical directions) at the driven end and a signal from acce-
lerometer (vertical directions) at the driven end were chosen
as test signals. Existing data was divided into separate sets,
each having 10000 samples. Such sets were prepared for all
the measured states: undamaged as well as with a cracked
blade, separately for accelerometers and eddy-current sen-
sors. Several attempts to determine the optimum network
structure were performed. The analysis started from order of
4 inputs and 4 outputs. The initial network had 2 neurons in
the hidden layer. All neurons in the hidden layer had hyper-
bolic tangent activation function. The single neuron in the
output layer had linear activation function. After optimiza-
tion, the best results were obtained for network having order
of 3 inputs, 3 outputs and 5 neurons in the hidden layer. After
network optimization phase, few networks were trained (two
for accelerometers and two for eddy-current sensors) — each
one modeling dynamics in a different technical state. Those
trained networks were later used as reference networks. The
goal of the investigation was to detect whether the set
of currently acquired data could be classified to one of
the known states. To verify this idea, 4 sets of validation
data (each set consisted of 35000 input and 35000 output

Fig. 11. Experimental rig with blades

Fig. 12. Simulation of crack at blade no 3
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Prediction error
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Undamaged rotor Damaged rotor

Reference network

m Data from undamaged
rotor

W Data from damaged rotor

Fig. 13. NARX results— Accelerometers (NSSE)
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Prediction error

m Data from damaged rotor

Undamaged rotor Damaged rotor

Reference network

Fig. 14. NARX results — Eddy-Current Sensors (NSSE)

samples), resulting from measurements in the presence of
different malfunctions, were used as inputs to the consid-
ered networks. As the measure of instance between real data
and predicted output the normalized sum of squared predic-
tion error (NSSE) was assumed. Thus, 4 estimates were ob-
tained for every channel. In the Figure 13 there are presented
results for the signals form accelerometers while in the Figu-
re 14 for the signals form eddy-current displacement sensor.

Experimental results clearly show that value of NSEE error
can be used as diagnostic symptom in turbine blades mo-
nitoring. Appearance of crack in the blade has significant
influence for neural network prediction error especially for
eddy-current sensors.

4.4. Application of proposed diagnostic algorithm
for wind turbine damage detection

The last stage of proposed algorithms testing was done on
real data collected on wind power plant turbine. The general
view of wind power plant is presented in Figure 15.

Data were collected by a typical time signal recorder
mounted at the object. Location of one of measurement point
is presented in Figure 16. In Figure 17 there is presented the
scheme of the considered system with the network of mea-
surement points (P1, ..., P6).

Fig. 16. Location of one of measurement point
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Fig. 17. Scheme of measurements points location
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Fig. 18. Example of data acquired from one vibration channel with its spectrum

In the Figure 18 the example of data acquired from one
vibration channel with its spectrum is presented.

During the whole experiment the object was in the same
condition so we can check only the reliability of proposed
algorithms based on real data. In the NARX approach data
processing was performed in Matlab and dedicated toolbox-
es: System Identification, Neural Network and Neural Net-
work Based System Identification v. 2.0. As the input to the
system the Keyphasor was chosen. As the training set the
data collected at 2007-07-21 by sensor placed on turbine
shaft bearing was chosen. Several attempts to determine the
optimum network structure were performed. The analysis
started from order of 7 inputs and 7 outputs. The initial net-
work had 4 neurons in the hidden layer. All neurons in the
hidden layer had hyperbolic tangent activation function.
The single neuron in the output layer had linear activation
function. After optimization, the best results were obtained

for network having order of 2 inputs, 2 outputs and 4 neurons
in the hidden layer. After network optimization phase a refe-
rence network based on data from 2007-07-21 was trained.
The goal of the investigation was to detect whether the set of
data acquired between 2007-07-21 and 2007-07-28 could be
classified to one of the known states. Chosen data was re-
corded for different rotational speed of turbine main shaft
and for various weather condition. To verify this idea, 8 sets
of validation data (each set consisted of 10000 input and
10000 output samples) from various dates were used as in-
puts to the considered networks. As the measure of distance
between real data and predicted output the normalized sum
of squared prediction error (NSSE) was assumed. The results
are presented in Figure 19.

After this analysis we decided to prepare data with simu-
lated fault. As fault we decided to take into consideration an
unbalance which is the most typical failure in wind turbine.
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Prediction error

We prepared 50 sets of validation data (each set consisted of
10000 input and 10 000 output samples) from various value of
unbalance were used as inputs to the considered networks.
The unbalance was simulated as sinus with frequency equal
to rotational frequency of turbine and amplitude increase
from 0 to 0.009 [m/sz]. The value of amplitude was chosen
based on the known history of turbine vibrations. This si-
nus was added to signals recorded at turbine main shaft.
The example of spectra of prepared signals are presented
in Figure 20. The results of NARX model testing for unba-
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Fig. 19. NARX experimental results

lance detection are presented in Figure 21. As the measure
of distance between real data and predicted output the
normalized sum of squared prediction error (NSSE) was
assumed.

The results of experiment clearly show that NARX model
can be successfully used for monitoring of wind turbine.
NSEE value doesn’t depend on the moment of measure-
ments, rotatonal speed of turbine and weather conditions.
The reliability of proposed algorithm is good enough to use
it in on-line structural health monitoring of real object.
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Fig. 21. NARX experimental results for simulated unbalance
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5. CONCLUSIONS

The paper presents results of application of NARX networks
for diagnostics of rotating machinery. There are other
approaches, which could be investigated. Usage of percep-
tron networks is often proposed for such an application. The
most promising application of perceptrons is its usage for
classification of spectra, when spectral lines are used as in-
puts to the network. Though this approach is simple to
present, it is much harder to implement it in reality. The most
important limitation is very high number of inputs. To simpli-
fy the problem, one can use spectra of worse resolution, but
the consequence is loss of ability to distinguish particular
spectral lines. This can be important limitation for machines
on rolling bearings, which have very rich spectra. On the
other hand, one can use as inputs only selected harmonics
(sometimes together with phase information), which are
known to be sensitive for certain malfunctions. Due to the
reasons given above, this method is better for machines with
sliding bearings, where spectra have less components.

The proposed algorithm suffers from very high complexi-
ty — there must be a separate network trained for every mal-
function. Then, after new data is acquired, prediction error
for each reference network must be calculated. All these fac-
tors create huge demand for processing power. On the other
hand, modern computers will process shown amounts of data
in hundreds of milliseconds (as was tested during research
on Pentium 4), which allows this algorithm to work even on-
line, where it is sufficient to determine the technical state
every few minutes — at most.

Important advantage of proposed method is ability to
learn as new data with new malfunctions are acquired. To
achieve this, the algorithm should be treated as supporting
tool for a vibration expert. When new data with unknown
failure are acquired, no similarity to an existing state is
detected. In such a case, an expert should investigate the
case, train new reference network on acquired data and label
it with a meaningful name.

The paper presents application of NARX neural network
to diagnostics of rotating machinery. The proposed method
was verified at the test rig, where correct state and two cases
of mechanical looseness failures were introduced. Per-
formed research showed ability of proposed algorithm to
detect introduced malfunctions. The algorithm was designed
to work in the steady state only, for it should be applicable for
machines working on a constant rotational speed for long
periods of time. Proposed algorithm is very processing pow-
er demanding, but does not exceed capabilities of modern
computers.
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