MECHANICS AND CONTROL

Vol.

30 No. 4 2011

Roman PUTANOWICZ

GROUNDS FOR THE SELECTION OF SOFTWARE COMPONENTS
FOR BUILDING FEM SIMULATION SYSTEMS
FOR COUPLED PROBLEMS

SUMMARY

This paper discusses rationales for selection of software components for building scientific simulation tools.
Nowadays no single research team has the resources or knowledge to build non-trivial simulation software form
scratch. Sharing experience about the motives behind the choice of sofiware components and the consequences of
particular decisions seems a valuable knowledge as it can help to avoid some potential traps. In the paper we
discuss software selection decisions for our problem solving environment for numerical modelling of coupled pro-
blems. For selected tools we discuss pros and cons of their use and mention potential alternatives. The detailed
discussion concerns implementation of a solver for thermoelasticity problems.

Keywords: software, coupled fields, numerical analysis, finite element methods

ANALIZA WYBRANYCH KOMPONENTOW OPROGRAMOWANIA
DO BUDOWY SYSTEMOW SYMULACJI MES PROBLEMOW SPRZEZONYCH

Artykul prezentuje analize wybranych komponentow oprogramowania pod kqtem ich zastosowania do budowy
systemow symulacji MES dla problemow sprzezonych. Budowa takich systemow bez wykorzystania pewnych goto-
wych komponentow jest praktycznie niemozliwa, jednak decyzja o ich uzyciu uwarunkowana jest szeregiem czyn-
nikow, a wybor konkretnego komponentu wplywa na przebieg tworzenia catego systemu symulacji. Istotne jest jak
najwczesniejsze rozpoznanie mozliwosci oraz ograniczen, czesto ukrytych, konkretnych komponentow, stqd cenna
jest wymiana doswiadczen zwiqzanych z ich zastosowaniem. Artykut omawia wybrane biblioteki i programy na

przykiadzie tworzenia programu od analizy zagadnien termosprezystosci.

Stowa kluczowe: komponenty, analiza numeryczna, problemy sprzezone, MES

1. INTRODUCTION

Building a new scientific simulation environment, for instan-
ce based on finite element method, is a daunting, complex
task (Oldehoeft 2002). Beside knowledge and skills required
to solve technical problems it also raises the issues of long
time commitment, resources allocation and team mana-
gement. Despite these difficulties, building own simulation
tools gives us an opportunity to shape them according to
the new ideas that appear in computational science such as
meshless methods, XFEM, discrete exterior calculus, to
name a few. It also gives us an unparalleled insight into the
nature of those simulation systems.

In order to manage the complexity and the development
costs of a simulation system, a common approach is to use
ready components, either COTS (Commercial Of-The-Shelf)
or OSS (Open Source Software). While the code sharing
is nothing new, we are observing steady shift towards
component programming, even if not all use of software
libraries can be branded as such. This trend is fuelled by the
appearance of many comprehensive, high quality software
packages and improvement and spread of standard interfa-
ces between components, both on middleware and applica-
tion level.

While removing the burden of low level implementation,
the component approach faces the developers with the

question which components the system should be compo-
sed of. Because of the early stages of the component pro-
gramming, the support of component’s interoperability and
exchangeability is still unsatisfactory. Thus selecting a com-
ponent is often “one-shot decision” — after the component is
tied to the rest of the system it is too costly to exchange it
with another. The other issue with components is that while
being functionally equivalent they can differ significantly in
the costs of getting started and maintenance.

The aim of the paper is to present the first results of
a research project aimed at the development of a software
environment which would allow the analyst to consider
various physical fields coupled to mechanics. The applica-
tion domain are engineering materials, especially concrete,
so eventually coupled processes such as the ones covered
in monographs (Gawin 2010, Kuhl 2005) are supposed to be
analysed.

The mechanical model considered in the paper is statics
of nonlinearly elastic materials, but it is understood here as
a prototype of a general nonlinear constitutive model for the
solid skeleton of the material (the model should eventually
incorporate damage, plasticity and discrete cracking). On the
other hand, the heat conduction model, to which the paper is
limited, is a prototype of many nonstationary diffusion pro-
cesses occurring in engineering materials, including moistu-
re transport and related chemomechanical processes. This is

* Institute for Computational Civil Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland;

e-mail: R.Putanowicz@L5.pk.edu.pl

234

MECHANICS AND CONTROL Vol. 30 No. 4 2011

because the partial differential equations governing the pro-
cesses are quite similar.

It is stressed that the aim is to incorporate arbitrary nonli-
nearity and coupling in the analysis. This means that the
mechanical and thermal material properties (e.g. Young’s
modulus and/or conductivity) are considered as time and
temperature-dependent.

In the paper the mathematical model is reviewed and
general algorithmic aspects are covered. The developed
simulation environment FEMDK is described and its
(prospective) advantages are listed. An example solution of
a coupled thermoelasticity problem of the temperature and
stress distribution in a thick-walled cylinder is presented.

2. SOFTWARE SELECTION DRIVERS

The problem with selecting software components or actually
any software technology is such that when it turns out that
a particular choice causes problems, it is usually to late to
modify it. Is there any systematic way to arrive at good deci-
sions? To the author’s experience there is none — of course
one can make a list of features that the components must
support and investigate potential candidates, or even make
a detailed study on the impact of a particular choice. Such
study is however expensive and time consuming. In the end
what really counts is the experience. This is probably espe-
cially true for academic software projects where the software
choice is done by scientists who would rather focus on their
own field than investigate the software itself. In most cases,
it probably looks this way that the person responsible for the
software choice selects some most promising candidates
and the first one which installs cleanly and just ,,feels right”,
and seems easy to learn is selected. Thus the process is
often driven by the first impression which can be misleading.
In the light of the above, it is most valuable to gather expe-
rience from other researchres about why they selected a par-
ticular component or software technology. It would be even
more valuable to know how they see their decisions from the
time perspective. Unfortunately such kind of wisdom is hard
to find, especially comments about wrong decisions and
their consequences. This is the main motivation behind this
paper, to share some of our experience related to the selec-
tion of software components. This is the experience of the
early stage of the project, so the outcome of some decisions
is not yet fully defined.

3. FEMDK PROJECT

The material for this paper is based on our work on Finite
Element Method Development Kit (FEMDK) project. The
scope of this project is solving multi-field problems that ap-
pear during the analysis of degradation phenomena of engi-
neering materials with special attention paid to concrete.
One of the main goals is building a problem solving environ-
ment which would facilitate fast creation of tools for solving
coupled problems. The main stress is on the ease of defining

multi-field problems, a possibility of experimenting with new
numerical algorithms, a potential to accommodate various
requirements regarding data formats, geometric models, ele-
ment types, FEM interpolation, solvers, etc.

3.1. Integration of tools in FEMDK

In order to meet its goals, it is necessary for FEMDK to inte-
grate several components (libraries and programs) in such
way that it is easy to build new tools using these compo-
nents, and it is easy to freely pass data between them. The
integration of components within FEMDK can conceptually
be done on four different levels.

Integration on library level

In case of libraries, by integration we understand ensuring
compatibility between data structures and function interfa-
ces of two or more libraries. In the most simple case it boils
down to a direct translation of data structure of library A into
a data structure of library B, as shown in Figure 1.

a)Q‘:Q

AcSNe

T

Fig. 1. Translation between data structures of different libraries:
a) direct translation; b) translation via proxy

In the case of object oriented implementation of data
structures, the translation layer can be built using such de-
sign patterns as Adapter shown in Figure 2, Bridge or Proxy.
In some cases it can be more convenient to do the translation
via the third, intermediate data structure as shown in Figu-
re 1. It is worth to do so when one has potentially many
different data structures, because this reduces the number
of translation functions needed. In such case the main diffi-
culty is to choose such intermediate structure that can be
feasibly translated into the final data structures. In case of
FEMDK this approach was taken when translating data
structures for geometric model and finite element meshes.
For the former we use CGM (Common Geometry Module)

Target Adaptee

Request()

|

SpecificRequest()

(implementation)

Adapter

Request() O =---~- ‘ SpecificRequest() H

Fig. 2. Adapter design pattern, after (Gamma et al. 1995)

235

Roman PUTANOWICZ

GROUNDS FOR THE SELECTION OF SOFTWARE COMPONENTS...

(Tautges 2001) library as the common denominator for geo-
metric models. For meshes we use moab: : Core class from
MOAB library as the mesh proxy representation.

The translation between data structures can also be done
by writing/reading them in some common data file format. In
case of FEMDK we commonly use two such formats: file
formats of VTK library for geometric and mesh data, and
HDF5 data format for general data structures.

Integration on application level

In case of applications the integration can mean:

— Extending the application so that it can share data using
some common data format.

— Providing batch processing facilities to interactive pro-
grams.

— Enabling the use of application in client—server architec-
ture. Here various approaches can be taken: named
pipes, threads, sockets, remote procedure call techni-
ques, etc. The choice between them depends on one’s
ability to modify application source code.

— Rebuilding the application to turn it into a library (if po-
ssible).

Integration on user interface level

By integration on this level we mean providing common uni-
form user interface to components. In case of graphical user
interface it means providing appropriate widgets for ente-
ring/displaying data. In case of command line interface it
usually means providing appropriate command line options
to configure and run components.

Integration on software build level

It should be possible to build and install all integrated com-
ponents (as well as their dependencies) in some uniform and
automated manner. This supports portability and is also
important because FEMDK and some of its dependencies
are meant to be used in source form to allow for their modifi-
cations and enhancements. To achieve this we use Dorsal
tool developed for FEniCS (Logg and Wells 2010) project.
Dorsal consists of a bash script and configuration data
base, and it manages components download, configuration,
building and installation — all this by delegating the job to
commonly used programs like svn, cvs, make, CMake, auto-
tools, etc.

Integration on documentation level

By this we understand providing a convenient way to ac-
cess documentation of all components in question, and to
navigate through this documentation.

3.2. Development of new tools for FEMDK

FEMDK makes it also necessary to design and build new
software tools. Most of the tools are for special pre- and
postprocessing tasks. As an example of such tool we can
mention BGD (Basic Geometric Domain) library which is part

of FEMDK. We have observed that many test data or com-
mon examples are based on simple geometric domains. The
use of general geometric modelling tools to define such do-
mains can be awkward, because many of the geometric and
topological parameters are fixed, and the user wants a quick
way to set the variable ones. To address this problem we have
designed BGD library to provide descriptions of the most
common geometric domains in 2D and 3D. Using this library
we can quickly set up geometric model and convert it to suita-
ble geometric data structures, for instance for tessellating it.
Listing 1 shows the example of using BGD library to define
and tessellate an I-type cross-section beam. In this example
we use two classes from BGD library: bgd : : IShape to de-
fine beam cross-section and bgd: : ExtrudedShape to
extrude the cross-section into a 3D object.

Listing 1: Code for generating unstructured mesh over
extruded geometry.

getfem: :mesh mesh;

femdk : : GMSHMesher mesher;

femdk: :bgd: : IShape ishape;
ishape.SetVertexLC(0.1) ;

femdk: :bgd: : ExtrudedShape beam (&ishape) ;
ishape.SetVertexLC(0.1) ;

beam. SetParam(,dz"”, 1.0);

getfem: :mesh beammesh;

W g oUW N

mesher.generate (beam, beammesh) ;

iy
o

getfem: : vtk export exportVTK(,ibeam.vtk”, true);

jun
i

exportVTK. exporting (beammesh) ;

jun
N

exportVIK.write mesh() ;

Fig. 3. Mesh resulting from code in Listing 1

It is also worth noticing that in line 8 we use external mesh
generator gmsh for which an integration wrapper was build.
This wrapper forks the main process and calls gmsh as
a child process.

4. SOFTWARE SELECTION DECISIONS

In this section we present rationales for our choice of
software components for FEMDK project. We comment on
the tools we have chosen but also give some remarks
on potential alternatives.

236

MECHANICS AND CONTROL Vol. 30 No. 4 2011

4.1. FEM library

The heart of FEMDK project is so-called FEM Kernel —
a library which supports implementation of Finite Element
Method. The main criteria for selecting FEM kernel library
were: the support for automatic compilation of variational
forms, the ability to handle simplicial and other meshes, sup-
port for multiple fields, support for XFEM methods. While
there are at least a couple of libraries with these features we
have chosen Get FEM++ (GetFEM~++ 2010). Other candida-
tes considered were Deal.II, 1libMesh, Dolfin.
Compared to other libraries Get FEM++ seemed to put mini-
mum restrictions on the kind of Finite Element method that
can be implemented with it. For instance it supports simpli-
cial, cubical and some non-standard families of finite ele-
ments while, otherwise very attractive, Deal.II library
supports only cubical family of elements.

4.2. Visualisation library

The decision concerning selection of components for vi-
sualisation services is twofold. Firstly, one has to decide
whether some very high level libraries should be used or one
stays at relatively low level of OpenGL library and some
simple wrappers for it. A high level visualisation toolkits
like VTK provide almost all imaginable support but are com-
plex — they generate overhead in terms of memory consump-
tion and processing speed. To gain maximum efficiency
they must be properly handled. For some types of applica-
tions it may make more sense to stick to relatively low level
OpenGL library and some drivers for it, for instance Qwt -
Plot3Dor ifv++. For FEMDK however, we have decided
to use VTK based solutions.

VTK library can be an excellent tool for data visualisation
task but it might not be as handy for general 3D graphics, for
instance for building a graphical preprocessor. For FEMDK
we have decided to use HOOPS 3D library by TechSoft 3D
(HOOPS 2010) which is the state-of-the-art 3D graphics system,
proprietary, but available free of charge for research purposes.

4.3. Mesh handling library

For an environment such as FEMDK the crucial issue is to
ensure support to exchange data between various mesh data
structures in memory, as well as between various data file
formats. To handle such tasks the MOABR (Mesh Oriented
dAta Base) (MOAB 2010) library was selected. MOAB provi-
des comprehensive, scalable, efficient solution for handling
structured and unstructured meshes and for associating any
data with mesh elements. What is more, it is an implementa-
tion of the iMesh interface developed by the Interoperable
Technologies for Advanced Petascale Simulations (ITAPS)
center, and can be used with other interfaces for geometry
and filed information exchange. At one point as a viable
alternative to MOAB the GrAL library was considered, how-
ever MOAB was chosen because of more vivid developers
and users community.

4.4.GUl library

Although FEMDXK is not exclusively graphical user interface
oriented environment, GUI library plays important role in it.
The choice of a GUI library is the hard one, as such library
must be compatible with several other graphical compo-
nents. It also determines to large extent the potential for por-
tability of the whole environment. For FEMDK three candi-
dates were seriously considered Qt, wx and FLTK.We have
decided to use Qt, because beside GUI it supports develop-
ment of non-GUI applications and provides many general
purpose programming tools.

4.5. Scripting extension language

The tasks envisioned for FEMDK environment mandate the
provision of a scripting interface. The choice of a scripting
language is an important decision as the scripting language
will contribute at large to how the users perceive the whole
environment. In case of FEMDK three languages were con-
sidered: Tcl, Guile and Python. From the technical point of
view there is not much difference in how interpreters for
these languages are embedded in an application, nor how the
extension for them can be written. For some time we have
considered Guile as the main candidate. Guile is interpreter of
Scheme which in turn is a functional language, and as such it
has some attractive features different from the two other
candidates. In the end, however, we have decided to use
Python, because of already existing Python interfaces to
components we would like to use in FEMDK. Python was
also indicated as the preferred language by some FEMDK
users.

4.6. Configuration tools

As FEMDK is more targeted at developers than at endusers
the choice of software configuration and building tools is
a decision that will affect potential users. Because of the use
of Qt library its gmake tool was our first choice, but it has
turned out that it is not flexible enough to our needs. Autoto-
ols (i.e. Automake, Autoconf, Libtool, etc) seem rather to be
rooted in UNIX-like systems, and they demand somehow
more experience from the users. In the end, we have decided
to use CMake which is portable and able to support our
various needs.

4.7. Other components used by FEMDK project

Because of constrained resources we could not select other
components with the same amount of attention. The ones
mentioned below were selected simply because we already
have some experience in using them.

— Handling of scientific data — for persistent data storage
we use HDF5. It is a data model, library and file format
flexible enough to accommodate all our requirements.
HDF5 is also supported by some of our other compo-
nents.

237

Roman PUTANOWICZ

GROUNDS FOR THE SELECTION OF SOFTWARE COMPONENTS...

— Automation of multi language programming — for this
task we use SWIG (Simplified Wrapper and Interface
Generator).

— Solver libraries — there are several candidates for this
kind of components and we have decided to investigate
the Trilinos framework (The Trilinos Project 2010).

— Mesh generation tools — here we are restricted by
the available tools. We plan to closely integrate in
our environment the following generators: gmsh,
geompack++, triangle.

— Symbolic computing — the use of symbolic computing
is in our “wish list”, nevertheless we have started to
investigate pros and cons of using Maxima computer
algebra system.

5. GETFEM++ AS A FINITE ELEMENT KERNEL
FOR FEMDK

As said in point 4.1 the main motivation for selecting
GetFEM++ library was its modular design and the very
week assumptions about the nature of finite element method
that can be implemented with Get FEM++. There is however
a price to pay for that, and this price is obfuscation of other-
wise straightforward trunk of FEM algorithm. This obfusca-
tion is due to abstract design patterns and several indirec-
tion layers which constitute the mechanism that allows one
to decouple components of the system, for instance provi-
ding a way to write generic algorithms independent on the
concrete data structures they operate on. The problem is
that this whole machinery is seldom discussed in presenta-
tion of FEM algorithms and grasping it (together with intrica-
cies of C++ language) can be challenging.

The aim of this section is to comment on Get FEM++ main
components and provide a sort of succinct guide allowing
readers to link Get FEM++ classes with the mathematical or
computational concepts the readers are familiar with.

In order to support implementation of Finite Element Me-
thod for a wide range of problems, Get FEM++ provides the
following facilities:

— support for matrix algebra on small, dense vectors and
matrices,

— support for solving linear algebraic equations and
eigenvalue problems,

— methods for interpolation, differentiation and integra-
tion over tessellated domains,

— support for generic description of mathematical models,

— support for integration of ordinary differential equa-
tions,

— support for equation assemblage,

— support for non-linear algebraic equations,

— support for level sets and XFEM methods,

— support for automatic interpolation between non-mat-
ching meshes,

— various post-processing utilities.

Presenting all the above subsystems is out of the limits of
this paper, thus only two simple examples demonstrating
some of them will be discussed. The examples are selected
from the point of view of implementing non-stationary and
non-linear models.

5.1. Implementing non-stationary models with GetFEM-++

In this example we will consider a very simple mathematical
model for projectile motion. Assuming that we neglect air
resistance the set of equations that describe the motion can
be written as:

dvx —
dt
dﬁ = _g
dt
1
&)
a
dy
—-v, =0
a7’
with initial conditions x(0) = x, (0) =y, v(0) = vy,
v(0) = vy. Introducing the state vector U, defined as
Vx
u=|"
X
y
we can cast equation (1) into matrix form
MY kU=F @
dt
where
1 000 0 0 0O 0
0100 0 0 0 0 —-g
M = , = , F =
0 01O -1 0 0 0 0
0 0 01 0 -1 0 0 0

and initial conditions are respectively

Vx0

0
UO = . c
X0

Yo

This matrix form will be the basis for the implementation
with Get FEM++ library.

238

MECHANICS AND CONTROL Vol. 30 No. 4 2011

The central Get FEM++ class for implementation of ma-
thematical models is getfem: :model. It allows one to
declare model variables and data, build model state equation
and solve it. Listing 2 shows a piece of the top level solution
procedure.

Listing 2: Code for building mathematical model for pro-
jectile motion.

1 /* Explicit matrix and right hand side

2 * of the model tangent equation

3 */

4 gmm: :dense matrix<scalar type> M(4,4);

5 gmm: :clear (M) ;

6 M(0,0) =1.0;

7 M(1,1) =1.0;

8 M(2,2) =1.0;

9 M(3,3) =1.0;

10

11 gmm::dense matrix<scalar type> K(4,4);

12 gmm::clear (K) ;

1) K(2,0) = -1;

14 K(3,1) = -1;

15

16 getfem::scalar type g = 9.81;

17

18 std::vector<scalar type> F(4);

19 FI[1] = -g;

20

21 getfem: :model model;

22

23 /* specify model state variable and model parameters */
24 model.add fixed size variable(,U”, 4, 2);

25

26 scalar type dt = 0.01 /* fixed timestep */;
27 model.add initialized scalar data(,dt”, dt);
28

29 add explicit_d on dt_brick(model, ,U”, ,dt”, M);
30

31 getfem::size type bi;

32 dal::bit_vector transient_bricks;

BE

34 bi=add explicit matrix(model, ,U”, ,U”, K);
35 transient bricks.add(bi) ;

36

37 bi = add_explicit_rhs(model, ,U”, F);

38 transient bricks.add(bi) ;

39

40 scalar type theta = 0.5;

41

42 model.add initialized scalar data(,theta”, theta);
43 getfem::add theta method dispatcher (model,
44 transient bricks, ,theta”);

In lines 1-19 we define matrices for our state equation. In
line 21 we create an instance of get fem: :model. In line 24
we say that the model will have fixed size (as opposed to mesh
based) state variable. In lines 29-38 we add objects descri-
bing successive terms of the state equation (2). In line 43 we
add time dispatcher object which manages time integration.

In case of non-stationary problems the main loop over
time or any pseudo time variable should be provided by the
user. In the case of the considered state equation it can be
implemented as shown in Listing 3.

Listing 3: Implementation of time integration loop.

1 // State vector U

2 std: :vector<getfem: :scalar type> U(4) ;
3 gmm: :clear (U) ;

4 // projectile motion initial conditions
5 double angle = 45*M PI/180;

6 double v0 = 1.0;

7 double x0 = 0.0;

8 double y0 = 0.0;

9 U[0] = v0 * cos (angle) ;

10 U[1] = v0 * sin(angle) ;

11 U[2] = x0;

12 U[3] = y0;

13

14 //Initialize model state variable at

15 //current (0) and previous(l) timestep
16 gmm::copy (U, model.set real variable(,U”,0));
17 gmm::copy (U, model.set real variable(,U”,1));
18

19 scalar_type residual = le-5;

20 gmm::iteration iter(residual, 0, 100) ;
21

22 scalar type sol_t = 0.0;

23 model.first iter();

24 Dbool go ahead = true;

25 while(true == go_ahead) {

26 iter.init () ;

27 sol_t +=dt; // advance current time

28

29 getfem::standard solve (model, iter);

30 gmm::copy (model.real variable(,U”, 0), U);
31

32 /* Print solution */

33 std::cout << sol t <<, , << U<< ,\n”;
34

35 if (U[3] < 0.0) { // hit the ground ?
36 go_ahead = false;

37 } else {

38 /* call time dispatcher */

39 model.next iter();

40 |}

a1}

Linear algebraic equations system resulting from discreti-
sation of the state equation is solved in line 29. The update
of the state variable on successive time steps is done in line
39 according to a time dispatcher added to each term of the
state equation as shown in lines 32—44 in Listing 2.

For our simple equation it is enough to use get-
fem: :theta method dispatcher. It allows to inte-
grate the ODE system with forward Euler method (0 = 0.0),
backward Euler method (¢ = 1.0) or midpoint method
(% = 0.5). The discretisation of time derivative for the term

Y
dt

is provided by the class explicit d on dt brick
for which the user can provide matrix M. This brick is not
provided in GetFEM++ library but it is relatively easy to
implement it taking as an example the class getfem: :ba-
sic_d on dt brick. This implementation is shown in

239

Roman PUTANOWICZ

GROUNDS FOR THE SELECTION OF SOFTWARE COMPONENTS...

Listing 4. The most important lines in this code are lines 39,
40, 31. They are implementation of the following operation:

L M to tangent matrix
MU Ly Uin=Ui A
1 . .
dr At A_MUi to right hand size
t

In line 39 we set the tangent matrix of the brick to M/Az. In
line 40 we augment the right hand side of the brick with
1/AtMU; where U; means the state variable on the already
completed time step. These three lines should be self-expla-
natory. The remaining lines are related either to Get FEM++
framework or can be seen as so-called syntactic noise of the
programming language (in this case C++). The burden of
these lines is the price to pay for having the same time code
flexibility and generality on one hand and program efficiency
on the other'.

Listing 4: Implementation of time integration brick with
explicit mass matrix.

namespace getfem {

struct have private data brick :
public virtual brick {

1

2

3

4

5 model real sparse matrix rB;

6 model complex sparse matrix cB;
7 model real plain vector rL;

8 model complex plain vector cL;
9 };

10

11 struct explicit _d on dt_brick :
12 public have private data brick {
13 virtual void

14 asm real tangent terms (const model &md,
15 size type ib,

16 const model::varnamelist &vl,
17 const model::varnamelist &d1,
18 const model::mimlist &mims,

19 model::real matlist &matl,

20 model::real_veclist &vecl,

21 model::real veclist &,

22 size type region,

23 build version version) const {

24 GMM _ASSERT1 (matl.size() ==1,
25 ,Basic d/dt brick has one and only one term”) ;
26 GMM_ASSERTI (mims.size() == 0,

27 ,Explicit d/dt brick does not need mesh im”);

28 GMM_ASSERT1 (vl.size() ==

29 && dl.size() >=2

30 && dl.size() <= 3,

31 ,Wrong number of variables for basic d/dt brick”) ;
32

33 const model real plain vector &dt =

34 md.real variable(dl[1]);

There are some projects which solve this problem by providing
special language for mathematical modelling and a compiler that
translates abstract, high level constructions into efficient code.
With maturing middle level tools for finite element method this
approach will, in author’s opinion, gain more widespread atten-
tion in future.

35 GMM_ASSERT1 (gmm::vect_size(dt) == 1,

36 ,Bad format for time step”) ;

37

38 gmm::clear (matl([0]) ;

39 gmm::copy (rB, matl[0]) ;

40 gmm::scale(matl[0], scalar type(1l) / dt[0]);

41 gmm::mult (matl[0], md.real variable(dl([0], 1), vecl[0]);
2 |}

43

44 explicit d on dt_brick (void) {

45 set flags(,Basic d/dt brick”, true /* is linear*/,
46 false /* is symmetric */, false /* is coercive */,
47 true /* is real */, true /* is complex */) ;

a8}
49

50 };
51

52 size type add explicit_d on dt_brick

53 (model &md, const std::string &varname,

54 const std::string &dataname dt) {

55 pbrick pbr = new explicit_d on dt_brick;

56 model::termlist tl;

57 tl.push back(model::term description(varname,
58 varname, true));

59 model::varnamelist dl (1, varname) ;

60 dl.push back(dataname dt);

61 return md.add brick (pbr, model::varnamelist (1, varname),
62 dl, tl, model::mimlist (), size type(-1));

63 |}

65 template <typename MAT>

66 size type add explicit_d on dt_brick (model &md,
67 const std::string &varnamel,

68 const std::string &dataname,

69 const MAT &B) {

70 size type ind = add explicit_d on dt_brick (md,
71 varnamel, dataname) ;

72 set_private data matrix(md, ind, B);

73 return ind;

74}

75

76 } /* namespace getfem */

6. IMPLEMENTING COUPLED
PROBLEMS WITH FEMDK

6.1. Summary of computational thermoelasticity

We start the analysis by assuming small strains and writing
the standard equation of equilibrium (momentum balance)
valid at each point of the considered isotropic solid in Voigt’s
notation:

L'c+pb=0 ©)]

where L is a suitable matrix of differential operators, ¢ is the
stress tensor, p is the material density and b is the body force
vector. The equation should be complemented by proper
boundary conditions. It can be written in terms of displa-
cements u which are usually the discretized fundamental
unknown field.

We assume that the stress © is derived from a certain free
energy functional and is related to strain € according to:

0=E(s—se), E=E(e 0), & =a6l @

240

MECHANICS AND CONTROL Vol. 30 No. 4 2011

where €° are thermal strains, _is the expansion coefficient,
0= T — T, is the relative temperature, i.e. its increase with
respect to strain-free (initial, reference) temperature 7;,. The
stiffness matrix E can depend on € and 6, I is the unit tensor
in vector form, IT=[1, 1, 1, 0, 0, 0]. Note that for linear kinema-
tics the strain is computed from the displacement vector as
€=Lu.

Then, for non-stationary heat conduction the balance
equation reads:

pcd+VTiq=r ()

where c the specific heat capacity, q the heat flux density and
r is the heat source density. Again, proper boundary condi-
tions have to be specified. The heat flux density is usually
expressed in terms of temperature gradient (Fourier’s law):

q=-AVO, A=A(0) 6)
where A is the conductivity matrix which can depend on 6.

The local mathematical model can be reworked into global
weak formulation using the weighted residuum approach.
The weak-form equilibrium equation, upon substitution of
constitutive relation (4), is written as

[, vy Bedv - [(Lv,) Elaodv =

)
T T
= [, vupbdV + [vytdS Vv,

where t are the tractions. The weak form of the heat conduc-
tion equation, upon substitution of Fourier’s equation (6),
reads

] T
jV vepcdV + jV (Vvg) AV6OdV =

®
:-[V VerdV—JS VeqndS VVe

where ¢, is the heat flux normal to the body surface. The two
weak-form equations, in which v, and vq contain weight func-
tions, are augmented by suitable essential boundary condi-
tions. Equations (7) and (8) are assumed to be coupled one-
way, i.e. the heat conduction induces thermal strains and
stresses, see for instance (Nicholson 2008). For a general
case of two-way coupling the Reader is referred for instance
to (Maugin 1992). If the two balance equations are not
coupled both ways, one can solve the problem of non-statio-
nary heat flow first and then consider the temperature-de-
pendent elasticity problem of stress evolution. This is the
way thermomechanical coupling is often implemented in
commercial codes.

Such one-way coupling of momentum balance to heat
conduction is also considered here, but using a monolithic
incremental-iterative scheme. The backward Euler scheme is
employed to integrate over time. The weak-form equations
(7) and (8) are linearized at the current time step ¢ + At.

The fundamental unknown fields of displacement and tem-
perature are discretized using a suitable finite element inter-
polation. The following matrix equations are obtained:

Kuu Kue du _ fext_fiirzt (9)
0 de '

Kee Qext a Qint
where K, is the tangent operator, K, 4 is the coupling matrix,
Ky is the algorithmic matrix related to heat capacity and con-
duction, d denotes iterative correction of a quantity, u and
0 are nodal displacements and nodal temperatures, respec-
tively, and finally the right-hand side contains out-of-balan-
ce forces and heat source terms.

A generalization of the mathematical formulation of multi-
field problems can be found for instance in (Kuhl 2005), while
the extension of the theory to multicomponent materials (to-
gether with its thermodynamic background) is presented for
instance in (Kubik 2004).

6.2. Extending GetFEM++ bricks system

The equations outlined in the previous section can be direc-
tly used to implement thermo-mechanical coupling brick
for Get FEM++. We should look at equation (9), especially
at its left hand side. In Get FEM++ there are already func-
tions to add bricks that calculate terms K, and Kgg,
they are add_isotropic linearized elastici-
ty brick and add generic elliptic brick,
respectively. What is left is the implementation of the brick
for the term K. While we will not show the full source code
of the brick as it is too long and full of technical intricacies,
we would like to show two functions which are at the core of
the implementation of such brick. Both functions do the
same — they assemble the coupling term, however the first
function is for the case when material properties can vary
within the domain, while the second is for the case of con-
stant properties, that is constant elastic properties and
constant thermal expansion coefficient. The code is given in
Listing 5. The reader should note direct equivalence of the
term

@,) Eo6dV

from equation (8) and the lines 19-24. The operator L is hid-
den in line 22. The stiffness matrix E is expressed with Lame’s
coefficients [and A. The operator vGrad means vectorized
gradient of element shape functions, and the operator Base
calculates the values of element shape functions. The num-
bers after # sign in the arguments to these operators de-
note finite element meshes where the operators are applied.
Using this we can handle a situation where material pro-
perties, displacement field and temperature field are approxi-
mated with different finite elements or even on completely
different meshes.

241

Roman PUTANOWICZ

GROUNDS FOR THE SELECTION OF SOFTWARE COMPONENTS...

The textual description of terms assembly is be parsed by
GetFEM++ library and automatically converted into appro-
priate assembly code.

Listing 5: Implementation of thermo-mechanical coupling
brick.

1 template<class MAT, class VECT>

2 void asm stiffness matrix for linear thm
3 (const MAT &RM , const mesh im &mim,

4 const mesh fem &mf u,

5 const mesh fem &mf_t,

6 const mesh fem &mf data,

7 const VECT &LAMBDA,

8 const VECT &MU,

9 const VECT &ALPHA,

10 const mesh region &rg =

11 mesh _region::all convexes()) {

12 MAT &RM = const_cast<MAT &> (RM) ;

13 GMM ASSERTI1 (mf data.get gdim() == 1,

14 sinvalid data mesh fem (Qdim=1 required)”) ;
15

16 GMM ASSERT1(mf u.get gdim()

17 == mf_u.linked mesh() .dim(),

18 ,wrong gdim for the mesh fem”) ;

19 generic assembly assem(,lambda=dataS$l (#3)”
20 ,mu=data$2 (#3);”

21 ,alpha=data$3 (#3) ;”

22 ,t=comp (vGrad (#1) .Base (#2) .Base (#3)) ;”

23 ,M(#1,#2)= -t(:,1,1,:,k).((3*1lambda (k)

24 +2*mu(k)) *alpha(k)) ;”

25);

26 assem.push mi (mim) ;

27 assem.push mf (mf u);

28 assem.push mf (mf t);

29 assem.push mf (mf_data) ;

30 assem.push data (LAMBDA) ;

31 assem.push data (MU) ;

32 assem.push data (ALPHA) ;

33 assem.push mat (RM) ;

34 assem.assembly (xrg) ;

35}

36

37 template<class MAT, class VECT>

38 void asm stiffness matrix for homogeneous_linear thm
39 (const MAT &RM , const mesh_im &mim,

40 const mesh fem &mf u,

41 const mesh fem &mf _t,

42 const VECT &LAMBDA,

43 const VECT &MU,

44 const VECT &ALPHA,

45 const mesh region &rg = mesh region::all convexes()) {
46 MAT &RM = const cast<MAT &>(RM) ;

47 GMM_ASSERTI (mf_u.get_gdim() == mf_u.linked mesh() .dim(),
48 ,wrong gdim for the mesh fem”) ;

49 generic assembly assem(,coeff=datas$l (1) ;”
50 ,t=comp (vGrad (#1) .Base (#2)) ;"

51 ,M(#1,#2)+= -t(:,1i,1,:).coeff (1) ;"

52);

53 assem.push_mi (mim) ;

54 assem.push mf (mf u);

55 assem.push mf (mf t);

56 VECT data (1) ;

57 data[0] = (3*LAMBDA[0] + 2*MU[0]) *ALPHA[O] ;
58 assem.push data(data) ;

59 assem.push mat (RM) ;

60 assem.assembly(rg) ;

61}

6.3. Thermo-mechanical analysis benchmark

In order to test our implementation we have considered
problem for which an analytical solution can be found.
In this problem an annulus geometry is loaded with internal
and external pressure and with thermal load. Listing 6 shows
declaration of femdk: :ExactAxisymThm class which
can calculate the exact solution. For temperature field
Dirichlet, Neumann and Robin boundary conditions can be
specified.

Listing 6: Class for calculating exact solution of a thermo-
mechanical problem for annulus geometry.

1 namespace femdk {

2 typedef enum {

3 /** Dirichlet condition u = v */

4 BC_DIRICHLET = O,

5 /** Neumann condition du/dn = v */

6 BC NEUMANN = 1,

7 /** Robin condition a*du/dn + bu = v */

8 BC_ROBIN = 2,

9 } BCType t;

10

11 using bgeot::base small vector;

12 using getfem: :base node;

13

14 class ExactAxisymThm {

15 public:

16 ExactAxisymThm() ;

17 void setGeometry (double innerRadius,

18 double outerRadius) ;

19 void setMechConditions (double innerPressure,
20 double outerPressure) ;

21 void setThermConditions (BCType t inner,

22 BCType_t outer,

23 int size,

24 double *data) ;

25 void setRefTemperature (double Tref) ;

26 void setMaterial (double E,

27 double nu,

28 double alpha) ;

29

30 void setModeToEvalT (void) ;

31 void setModeToEvalU(void) ;

32 void setModeToEvalSigma (void) ;

33 void setEvalMode (char mode) ;

34

35 double evalTAt (double r) ;

36 double evalTAt (const base node &p) ;

37 double evalUAt (double r) ;

38 double evalUAt (const base node &p) ;

39 /** Compute stress tensor in cylindrical coordinates.
40 */

41 void evalSigmaAt (double r, base small vector &sigma) ;
42 void evalSigmaAt (const base node &p,

43 base small vector &sigma) ;

44 Dbgeot::base small_ vector operator () (double r);
45 bgeot::base_small_ vector operator () (const base node &p) ;
46 };

Figure 4 shows the problem setup where constant tempe-
rature and pressure are applied on internal and external bo-
undary. Plane strain conditions are assumed. The load and
material parameters are given in Table 1.

242

MECHANICS AND CONTROL Vol. 30 No. 4 2011

Table 1

Material and load parameters for thermoelasticity benchmark

Property Symbol Value Unit
Density P 2300 kg/m’
Poisson’s ratio \% 0.21
Modulus of elasticity E 32 000 MPa
Coeff. of ther. expansion o 107 1/°C
Specific heat capacity Cp 0.75 kJ/(kg-K)
Thermal conductivity k 1.7 W/(mK)
Reference temperature Ty 0 °C
Inner wall temperature T; 20 °C
Outer wall temperature T, 200 °C
Inner wall pressure i 1100 Pa
Outer wall pressure Po 1700 Pa

Por T,
pi» T; !
)
.._._:
i 2 N
insulation
R,

Fig. 4. Geometry and load setup for the benchmark

The results obtained from our code are in good agree-
ment with analytical results as shown in Figures 6 and 7.
Thanks to the flexibility of GetFEM++ kernel we were able
to solve the problem in several configurations, for instan-
ce setting different meshes for temperature and displace-
ment fields.

T

40

HHIBRIH\HI]\%IOIHHII]I?QH\H

z X 20 200

Fig. 5. Finite element mesh and temperature field

200 T T T T

180 | -

160 - —

140 | b

120 - —

100 | B

Temperature

40 - exact b

FEM -+
20 1 1 1 1
5 52 5.4 5.6 5.8 6

Radius

Fig. 6. Comparison of analytical and FEM results
for temperature

0.0078 i . : '

0.0076

T

0.0074

0.0072 -

0.007

0.0068

Radial displacement

0.0066

0.0064

exact

R FEM t
0.0062 . i ’ 4
8 5:2 5.4 5.6 5.8 6

Radius

Fig. 7. Comparison of analytical and FEM results
for radial displacement

7. SUMMARY

With this paper we would like to share our experience with
building FEM tools for analysis of coupled problems. Using
an example of thermoelasticity we have shown how the ma-
thematical formulation can be cast into implementation ba-
sed on Get FEM++ library as the finite element kernel of our
FEMDK project. We hope that the examples and comments
attached to them can help to make more concious decisions
regarding the selection of software components for FEM
analysis. As for FEMDK project we are developing it in two
directions. One is implementation of more complex material
models for elastoplasticity, damage and fracture mechanics.
The other is building more user friendly interface that will
lower the barriers related to complexity of Get FEM++ kernel
and the burden of C++. One possible way to do it is to enable
some computation to be done via Python scripts. Surely this
will lower the performance of programs but we will gain in
terms of performance of programmers, which is more impor-
tant for our research on finite element method itself.

243

Roman PUTANOWICZ

GROUNDS FOR THE SELECTION OF SOFTWARE COMPONENTS...

Acknowledgments

Scientific research has been carried out as a part of the
project ,, Innovative recourses and effective methods of safe-
ty improvement and durability of buildings and transport
infrastructure in the sustainable development” financed by
the European Union from the European Fund of Regional
Development based on the Operational Program of the
Innovative Economy.

References

Gamma E., Helm R., Johnson R.E., Vlissides J. 1995, Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading, MA.

Gawin D. 2010, Degradation processes in microstructure of cement
composites at high temperature. Number Engineering studies
no 69. Polish Academy of Sciences, Warsaw (in Polish).

GetFEM++ 2010, Homepage, http://download.gna. org/getfem/html/
homepage/index.html.

HOOPS 2010, 3D Framework, http://developer.
hoops/index.html.

techsoft3d.com/

Kuhl D. 2005, Modellierung und Simulation von Mehrfeldproble-
men der Strukturmechanik. Ph.D. dissertation, Ruhr University
of Bochum, Bochum.

Kubik J. 2004, Elements of the thermomechanics. Politechnika Opol-
ska, Opole (in Polish).

Logg A., Wells G.N. 2010, DOLFIN: Automated finite element com-
puting. ACM Transactions on Mathematical Software, 37(2),
pp. 417-444.

Maugin G.A. 1992, The Thermomechanics of Plasticity and Fracture.
Cambridge University Press, Cambridge.

MOAB: 2010, 4 Mesh-Oriented datABase, http://trac. mcs.anl.gov/
projects/ITAPS/wiki/MOAB.

Nicholson D.W. 2008, Finite element analysis. Theromechanics of
solids. CRC Press, Boca Raton.

Oldehoeft R. 2002, Taming complexity in high performance compu-
ting. [in:] Computational science, mathematics and software,
Ronald F. Boisvert and Elias N. Houstis (Eds.). Purdue Universi-
ty Press, West Lafayette, IN, USA, pp. 57-77.

Tautges T.J. 2001, The Common Geometry Module (CGM): a Generic,
Extensible Geometry Interface, Engineering with Computers,
17(3), pp. 299-314.

The Trilinos Project 2010, http:/trilinos.sandia. gov.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

