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ASYMPTOTIC FORMULAE FOR THE ACOUSTIC SELF-IMPEDANCE
OF SIMPLY-SUPPORTED AND SIMPLY SUPPORTED-CLAMPED ANNULAR PLATES

ABSTRACT

This study focuses on the sound radiation of a vibrating flat annular plate. The rigorous theoretical considerations deal with some
time-harmonic and axisymmetric vibrations. Three different boundary configurations are considered, i.e. one of the plate’s edges is
simply supported and the other one is clamped or also is simply supported. The active and reactive self-impedance of the system are
presented in their Hankel’s representations, valid within the whole frequency spectrum. The expressions obtained are transformed
to their elementary forms, valid for the high frequencies. Low fluid loading and low internal friction of the plate are assumed. The
obtained results are illustrated with sample plots in the domain of acoustic wavenumber. Elementary formulae presented can be useful
for further theoretical analysis of the total sound power radiated by an excited flat plate in an acoustic fluid as well as for efficient
engineering computations.

Keywords: active and reactive self-impedance, sound radiation for the high frequencies, annular flat plate in a rigid baffle

WYZNACZANIE AKUSTYCZNEJ IMPEDANCJI WŁASNEJ PŁASKICH PŁYT PIERŚCIENIOWYCH
O RÓŻNYCH KONFIGURACJACH BRZEGOWYCH Z ZASTOSOWANIEM RÓWNAŃ ASYMPTOTYCZNYCH

W pracy podjęto zagadnienie promieniowania dźwięku przez drgającą płaską płytę pierścieniową. Ścisłe rozważania teoretyczne
dotyczą osiowosymetrycznych drgań harmonicznych. Rozpatrzono trzy różne konfiguracje brzegowe, tj. dla jednej krawędzi płyty
swobodnie podpartej, a drugiej utwierdzonej lub swobodnie podpartej. Czynną i bierną impedancję własną układu drgającego
przedstawiono w reprezentacji Hankela, słusznej w całym spektrum częstości. Wyrażenia te zostały przekształcone do ich elemen-
tarnych postaci, słusznych dla wysokich częstości. Założono, że wpływ powietrza na drgania płyty oraz tłumienie wewnętrzne są
znikome. Otrzymane wyniki zilustrowano wybranymi wykresami w funkcji liczby falowej. Przedstawione wzory elementarne mogą
być przydatne do dalszej analizy teoretycznej całkowitej mocy promieniowania dźwięku przez płaską płytę pobudzoną do drgań
z uwzględnieniem wpływu ośrodka, jak również do szybkich obliczeń inżynierskich.

Słowa kluczowe: czynna i bierna impedancja własna, promieniowanie dźwięku dla wysokich częstości, płaskie płyty pierścieniowe
w sztywnej odgrodzie

1. INTRODUCTION

The problems of acoustic waves generation and propagation
by vibrating surfaces of finite geometric sizes have been quite
intensively investigated both, theoretically and experimentally,
for several years now. The obtained results make it possible to
identify and model the acoustic fields generated by numerous
devices used in the petroleum industry and other industrial
branches, in communication, and in several common devices
such as computer disks. The purely theoretical investigations
usually require a number of simplifying assumptions are made
for theoretical considerations on the sound field generation
of some vibrating flat plates. Nevertheless, some theoretical
results known from the literature make possible some effective
experimental investigations and measurements. Additionally,
any theoretical results provide some rough approximations
for some energy magnitudes describing the generated sound
field, if the investigated acoustic system satisfies the assump-
tions made. Therefore, the analytical solutions for the sound
radiation problems have been found for the simplest piston
radiators only. However, it is difficult or impossible to obtain
the elementary expressions for some complex acoustic systems.
Therefore, few papers present some approximate methods to

describe the sound radiation by some flat plates of finite geo-
metric dimensions.

Czarnecki, Engel and Panuszka (1981) applied the
method of equivalent area of a clamped circular plate to
roughly estimate the sound radiation efficiency obtaining some
highly effective elementary formulae. Lee and Singh (1994)
applied the Rayleigh-Ritz method to derive expressions for the
radiation efficiency of a computer disk. The authors focused
particularly on the influence of disk rotation on the acoustic
field generated. Rdzanek and Engel (2000) presented asymp-
totic formulae of the self-impedance of a clamped annular plate.
Rdzanek (2003) analyzed the sound radiation of clamped-free
and free-clamped annular plates embedded in the infinite rigid
baffle using the Hankel transform obtaining the asymptotic
formulae for the acoustic self-impedance coefficients. Lee and
Singh (2005) examined the influence of thickness of an annular
plate on sound radiation. The authors used both analytical and
semi-analytical methods to solve this problem. Anderson and
Bratos-Anderson (2005) studied the sound radiation efficiency
of orthotropic rectangular plates with dimensions greater than
the structural wavelength. The numerical results were com-
pared to the experimental data. The hyper-matrices of acoustic
impedance were used to estimate the complex acoustic power
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by Arenas and Albaracín (2007). This method applies a number
of equivalent pistons instead of the vibrating surface, which,
in consequence, gives a considerable reducing in the compu-
tation time. Zawieska (2007) analysed the active control of
noise emitted by the high power electric transformers. The
front panel of the transformer enclosure was considered to be
an excited simply supported rectangular plate. It was modeled
experimentally using an array of loudspeakers yielding a satis-
factory accuaracy. Mellow and Kärkkäinen (2007) presented
a new rigorous method for calculating the far field sound ra-
diation from a shallow spherical shell in an acoustic medium.
The eigenfunction expansion was used and the King integrals
were solved analytically. Rdzanek and Rdzanek (2007) con-
sidered the acoustic impedance coefficients of an elastically
supported annular plate for axisymmetric vibrations. As a re-
sult, the asymptotic formulas were obtained. Leniowska (2008)
presented the effect of viscous damping, structural damping
and fluid loading on the active vibration control of a circular
plate of axisymmetric vibrations. For this purpose, the linear
state model was applied together with the orthogonal series
method. Kozień and Wiciak (2010) analyzed the acoustic pres-
sure output of an excited squared simply-supported plate using
the finite element method. The energy relationships were used
to develop the governing equations of forced asymmetric vi-
brations of sandwich panels by Zhou and Crocker (2010). The
results obtained were used to determine the sound transmission
loss of such panels. The same method was used by Arenas,
Ramis, and Alba (2010) to estimate the sound field of an el-
liptically shaped transducer in an infinite baffle. Kuo, Shiah,
and Huang (2011) applied the modal analysis to determine the
near-field and far-field sound pressure of the vibrator mem-
brane of an actual portable loudspeaker. The glued edge of the
membrane was considered to be elastically supported. Brański
and Szela (2011) examined the effectiveness of the active vi-
bration reduction of a triangular plate is evaluated using the
piezo ceramic actuators. Mazur and Pawełczyk (2013) used
nonlinear control filters such as Artificial Neural Networks
or Volterra filters for active noise control of vibrating plates.
The control system was verified experimentally. Wrona and
Pawełczyk (2013) analyzed the influence of actuator placement
on the controllability of a vibrating fully clamped rectangu-
lar plate for active noise-vibration control using a memetic
algorithm. The results were validated experimentally. Szemela
(2013) developed rigorously the asymptotic formulas of the
acoustic impedance modal coefficients of a clamped circular
plate located at the boundary of the three-wall corner. Oberst,
Lai, and Marburg (2013) presented guidelines for the numeri-
cal vibration and the acoustic analysis of brake squeal using
models of simplified brake systems with the friction contact.
The annular plate used in the break system was considered to
be thick.

So far, the asymptotic formulae of the acoustic self-
impedance coefficients of an annular plate with specific bound-
ary configurations can be obtained in Rdzanek and Rdzanek
(2007). Nevertheless, the detailed analysis for an annular plate
was not presented so far, where one edge of the plate is sim-
ply supported and the other is clamped or is simply supported.

Therefore, the main aim of this study is to fill this literature gap
and to provide the appropriate results useful for engineering
computations valid for frequencies higher than the successive
eigenfrequencies of the plates.

2. ANALYSIS ASSUMPTIONS

A flat annular plate is embedded in a flat rigid baffle. The plate
performs some time-harmonic and axisymmetric vibrations
of a small amplitude. The plate’s vibrations are the source of
some acoustic waves radiated into the hemisphere above the
plate. Low fluid loading and low internal friction of the plate
are assumed. The linear model of the plate by Kirchhoff-Love
is used.

Three different boundary configurations of the plate are
considered: (a) both edges of the plate are simply supported,
(b) the internal edge is clamped and the external one is simply
supported, (c) the internal edge is simply supported and the
external one is clamped. Those three configurations are further
referred to as: ss, cs and sc, respectively. The n-th mode shape
of the plate is expected as (cf. McLachlan (1955) and Leissa
(1969))

Wn(r) = An[J0(knr)+BnI0(knr)−CnN0(knr)

−DnK0(knr)],
(1)

where r ∈ [a,b] is the radial variable in polar coordinates, a and
b are the internal and external radii of the plate, respectively.
The clamped edge satisfies the following boundary conditions:

Wn(rc) = 0,
d
dr

Wn(r)|r=rc = 0, (2)

where rc ∈ {a,b} is the radius of the corresponding edge,
whereas, the simply supported edge satisfies some other bound-
ary conditions, i.e.

Wn(rs) = 0,
(

d2

dr2 +
ν

r
d
dr

)
Wn(r)|r=rs = 0, (3)

where rs ∈ {a,b} is the radius of the simply supported edge,
v is the Poisson’s ratio.

It is not necessary to find the values of constants An, Bn

and Dn to derive some energy magnitudes characterizing the
sound radiation of an annular plate, therefore they are not
presented herein. In the analysis presented in this paper the
following convention is respected: if the magnitude is valid
for one of the three boundary configurations, the subscript of
the magnitude contains the corresponding denotation, i.e. ss,
cs or sc, respectively. Several magnitudes valid for a clamped
annular plate quoted from Rdzanek and Engel (2000) have
been used as denotations in this paper, their subscript contains
the letters cc.

After some mathematical manipulations it was found
from equations (1)–(3) that the value of constant together with
the frequency eqauation of the plate, can be formulated as
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Cn,ss =
sS(sxn)−S(xn)−2λn[s2J0(sxn)I0(sxn)− J0(xn)I0(xn)]

sT (sxn)−T (xn)−2λn[s2N0(sxn)I0(sxn)−N0(xn)I0(xn)]

=
sN(sxn)−N(xn)−2λn[s2J0(sxn)K0(sxn)− J0(xn)K0(xn)]

sR(sxn)−R(xn)−2λn[s2N0(sxn)K0(sxn)−N0(xn)K0(xn)]
,

(4)

Cn,cs =
sS(sxn)−S(xn)−2λns2J0(sxn)I0(sxn)

sT (sxn)−T (xn)−2λns2N0(sxn)I0(sxn)
=

sN(sxn)−N(xn)−2λns2J0(sxn)K0(sxn)

sR(sxn)−R(xn)−2λns2N0(sxn)K0(sxn)
, (5)

Cn,sc =
sS(sxn)−S(xn)+2λnJ0(xn)I0(xn)

sT (sxn)−T (xn)+2λnN0(xn)I0(xn)
=

sN(sxn)−N(xn)+2λnJ0(xn)K0(xn)

sR(sxn)−R(xn)+2λnN0(xn)K0(xn)
, (6)

where λn = xn(1− v), xn = kna denotes successive eigenfre-
quencies of the plate, s = b/a is the geometric parameter of
the plate, and

S(x) = J1(x)I0(x)+ J0(x)I1(x), (7)

T (x) =N1(x)I0(x)+N0(x)I1(x), (8)

N(x) =J1(x)K0(x)− J0(x)K1(x), (9)

R(x) =N1(x)K0(x)−N0(x)K1(x). (10)

3. INTEGRAL FORMULATIONS

The Hankel’s representation of the normalized complex self-
-impedance can be formulated as (cf. Rdzanek and Engel 2000)

Πn = Πan− iΠrn = 4δ
4
n qn

∫
∞

0
ψ

2
n (x)

xdx√
1− x2

, (11)

where Πan and Πrn denote the active and reactive self-
impedance, respectively, δn = kn/k,

q−1
n,ss = q−1

n,cc+2sλn[an(sxn)− (sxn)
−1− sλn]

−2λnd2
n [an(xn)− x−1

n −λn],
(12)

q−1
n,cs =q−1

n,cc +2sλn[an(sxn)− (sxn)
−1− sλn], (13)

q−1
n,sc =q−1

n,cc−2λnd2
n [an(xn)− x−1

n −λn], (14)

q−1
n,cc =1−d2

n , (15)

is the n-th normalization factor,

ψn,ss(x) =ψn,cc(x)−
λn

δn

sJ0(sβx)−dnJ0(βx)
δ 2

n + x2 , (16)

ψn,cs(x) =ψn,cc(x)−
λn

δn

sJ0(sβx)
δ 2

n + x2 , (17)

ψn,sc(x) =ψn,cc(x)+
λn

δn

dnJ0(βx)
δ 2

n + x2 , (18)

ψn,cc(x) =
δnan(sxn)J0(sβx)− xJ1(sβx)

δ 4
n − x4

− dn[δnan(xn)J0(βx)− xJ1(βx)]
δ 4

n − x4 ,

(19)

is the n-th eigenfunction of the vibrating plate,
an(xn) = G1(xn)/G0(xn), an(sxn) = G1(sxn)/G0(sxn), dn =

G0(xn)/sG0(sxn), β = ka, Gµ(x) = Jµ(x) − CnNµ(x) for
µ ∈ {0,1} and x ∈ {xn,sxn}. The integration in equation
(11) is performed in the plane of complex variable along the
real axis. The integrals, computed within the intervals (0,1)
and (1,∞), represent the active and reactive self-impedance,
respectively. Integral (11) and its integration path are analo-
gous with those valid for a clamped annular plate (cf. Rdzanek
and Engel 2000).

4. ASYMPTOTICS FOR THE HIGH FREQUENCIES

It does not seem possible to formulate the self-impedance di-
rectly from equation (11). Nevertheless, it is possible to find
some asymptotic expressions for the active and reactive self-
impedance valid within the high frequency range. The active
self-impedance was found using a specially selected integral,
computed in the plane of complex variable along a closed path.
The asymptotic method of stationary phase was used while
computing the integrals over the infinite intervals.

After an amount of the mathematical manipulation some
asymptotic formulations for the active and reactive self-
impedance for the simply supported-clamped annular plates
were found. The whole computing procedure had been pre-
sented in detail earlier for a clamped annular plate (cf. Rdzanek
and Engel 2000), and therefore only the asymptotic results ob-
tained have been presented in this paper. During computing
the active and reactive self-impedance it was possible to sepa-
rate their non-oscillating and oscillating parts, denoted with a
bar or with a tilde, respectively. The active self-impedance is
presented as

Πan = Π̄an + Π̃an +O(δ 4
n β
−3/2), (20)

where the term covering symbol O denotes the approximation
error.

19



W.P. RDZANEK, W.J. RDZANEK

ASYMPTOTIC FORMULAE FOR THE ACOUSTIC SELF-IMPEDANCE OF  SIMPLY-SUPPORTED . . .

The non-oscillating and oscillating parts of the active
self-impedance can be formulated as

Π̄an =
1√

1+δ 2
n
+

qnun

2

(
1√

1−δ 2
n
− 1√

1+δ 2
n

)
, (21)

Π̃an =
2qn

β
√

πβ

δ 4
n

(1+δ 2
n )

2

{
(b2

0−b2
1)cosw1

+2b0b1 sinw1

+
1

s
√

s
[(h2

0−h2
1)cosw2 +2h0h1 sinw2]

− 2
√

2
√

s
√

s−1
[ε(h1b0−h0b1)cosw3

+(h1b1 +h0b0)sinw3]

+
2
√

2
√

s
√

s+1
[(h1b1−h0b0)cosw4

− (h1b0 +h0b1)sinw4]

}
,

(22)

where w1 = 2β +π/4, w2 = 2sβ +π/4, w3 = (s−1)β +π/4,
w4 = (s+1)β +π/4 and

ε =


1, for ss plate,

−1, for cs and sc plates,

un,ss = un,cc−2λnx−1
n (1−d2

n), (23)

un,cs = un,cc−2λnx−1
n , (24)

un,sc = un,cc +2λnx−1
n d2

n , (25)

un,cc = 1+a2
n(sxn)−d2

n [1+a2
n(xn)], (26)

h0 = 1/(1−δ
2
n ),b0 = dnh0, (27)

h1,(ss,cs) = δnan(sxn)h0 + sλn/δn,

h1,sc = δnan(sxn)h0,

b1,(ss,sc) = dn[δnan(xn)h0 +λn/δn],

b1,cs = dnδnan(xn)h0.

(28)

The reactive self-impedance is presented as

Πrn = Π̄rn + Π̃rn +O(δ 4
n β
−3/2), (29)

with the analogy approximation error as in equation (20).
The non-oscillating and oscillating parts of the reactive self-
impedance can be formulated as follows:

Π̄rn =
qn

πsβ

[
α1n

1+δ 2
n
+

α2n arcsinδn

2δn
√

1−δ 2
n
+

+
α3n arcsinhδn

2δn(1+δ 2
n )

3/2

]
,

(30)

Π̃rn =
2qn

β
√

πβ

δ 4
n

(1+δ 2
n )

2

{
(b2

1−b2
0)sinw1

+2b1b0 cosw1

+
1

s
√

s
[(h2

1−h2
0)sinw2 +2h1h0 cosw2]

− 2
√

2
√

s
√

s−1
[(h1b0−h0b1)sinw3

+(h1b1 +h0b0)cosw3]

− 2
√

2
√

s
√

s+1
[(h1b1−h0b0)sinw4

+(h1b0 +h0b1)cosw4]

}
,

(31)

where all the denotations used are analogous with those used
to formulate the active self-impedance, with the exception of
the following factors

α1n,ss =α1n,cc +2sλn{an(sxn)− sλn

+d2
n [an(xn)−λn]},

(32)

α1n,cs =α1n,cc +2sλn[an(sxn)− sλn], (33)

α1n,sc =α1n,cc +2sd2
nλn[an(xn)−λn], (34)

α1n,cc ={1+δ
2
n a2

n(sxn)+ sd2
n [1+δ

2
n a2

n(xn)]}h0, (35)

α2n,ss =α2n,cc +4sλn[an(sxn)+d2
nan(xn)], (36)

α2n,cs =α2n,cc +4sλnan(sxn), (37)

α2n,sc =α2n,cc +4sd2
nλnan(xn), (38)

α2n,cc = {−(3−4δ
2
n )[a

2
n(sxn)+ sd2

na2
n(xn)]

−(1−2δ
2
n )(1+ sd2

n)}h0,
(39)

α3n,ss = α3n,cc−4sλn{(2+3δ
2
n )[an(sxn)

+d2
nan(xn)]−λn(1+2δ

2
n )(s+d2

n)},
(40)

α3n,cs = α3n,cc−4sλn[(2+3δ
2
n )an(sxn)

−sλn(1+2δ
2
n )],

(41)

α3n,sc = α3n,cc−4sd2
nλn[(2+3δ

2
n )an(xn)

−λn(1+2δ
2
n )],

(42)

α3n,cc = (3+4δ
2
n )[a

2
n(sxn)+ sd2

na2
n(xn)]

−(1+2δ
2
n )(1+ sd2

n).
(43)

The results obtained and presented in their elementary
forms (20) and (29) are valid for frequencies higher than suc-
cessive eigenfrequencies of the plate, i.e. for k > kn. The results
cover an approximation error, which theoretical estimation is
δ 4

n /β 3/2. The value of the error is small for k > kn and de-
creases considerably with an increase in the plate’s vibration
frequency. The elementary formulations can be used if the fol-
lowing conditions are satisfied: the free field conditions, when
the plate is embedded in an infinite baffle, and when the plate’s
excitation is axisymmetric and time-harmonic.

20



MECHANICS AND CONTROL Vol. 33 No. 1 2014

c)

b)

a)

Fig. 1. The normalized active and reactive self-impedance Πa,n and Πr,n, respectively, for b/a = 1.2 and for three different annular
plates with one edge simply supported and the other clamped or also simply supported. All the dotted curves in this figure are

obtained from the integral formula (11), and all the solid curves from the asymptotic formulae (20) and (29),
boundary configurations: a) ss, b) cs, c) sc
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c)

b)

a)

Fig. 2. The normalized active and reactive self-impedance Πa,n and Πr,n, respectively, for b/a = 2.0 and for three different annular
plates with one edge simply supported and the other clamped or also simply supported. All the dotted curves in this figure are

obtained from the integral formula (11), and all the solid curves from the asymptotic formulae (20) and (29),
boundary configurations: a) ss, b) cs, c) sc
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c)

b)

a)

Fig. 3. The normalized active and reactive self-impedance Πa,n and Πr,n, respectively, for b/a = 5.0 and for three different annular
plates with one edge simply supported and the other clamped or also simply supported. All the dotted curves in this figure are

obtained from the integral formula (11), and all the solid curves from the asymptotic formulae (20) and (29),
boundary configurations: a) ss, b) cs, c) sc
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c)

b)

a)

Fig. 4. The approximation error order estimated as |ΠI −ΠA| , where ΠI and ΠA is the self-impedance of the first elastic body mode
computed from the integral formulae and asymptotic formulae, respectively, and the theoretical value of the approximation
error order taken as δ 4

n /β 3/2 or δ 4
n /β 1/2. The theoretical curves are plotted with dotted lines, and the estimated curves are

plotted with solid and dashed lines, for the active and reactive self-impedance, respectively, for the three boundary
configurations: a) ss; b) cs; c) sc
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5. NUMERICAL ANALYSIS

Several curves representing the active and reactive self-
impedance of the plate are plotted in figures 1–3. They are
valid for the three boundary configurations discussed, for three
sample values of the plate’s geometric parameter s, and for the
six of the lowest elastic body modes of the plate. All the curves
are plotted in terms of the acoustic wavelength k normalized
by the structural wavelength k1 associated with the first elastic
body mode. Generally, there is rather small influence of the
boundary configuration on the shape of the self-impedance
curves for small values of s (cf. fig. 1). The influence is greater
for the higher values of parameter s (cf. figs. 2–3). The curves
representing the normalized active and reactive self-impedance
of a simply supported annular plate approach their values of
1 and 0, respectively, at a slower rate than for both remaining
boundary configurations. Any detailed analysis of the influence
of the self-impedance on the total sound power radiated has not
been discussed in this paper. Figures 1–3 show that a change
in the boundary configuration of even one edge of an annular
plate can cause a considerable change in its self-impedance,
and therefore all the differences in the corresponding formula-
tions should be taken into account.

Some curves representing different estimations of the ap-
proximation error of the active and reactive self-impedance
of the first elastic body mode are plotted in figure 4. One of
the estimations was found by comparing the results obtained
from asymptotic and integral formulae. The estimated values
are slightly greater than those determined theoretically for
δ 4

n /β 3/2 for all the boundary configurations considered. How-
ever, the regular value of the approximation error does not
exceed the value of δ 4

n /β 1/2 (cf. fig. 4).

6. CONCLUDING REMARKS

Some elementary formulations for the normalized active and
reactive self-impedance of an annular plate with one edge
simply supported and the other one clamped or also simply
supported have been presented. Those formulations are easy
to express in terms of some computer code and they do not
need much processor capacity. They are valid within the range
of high frequencies. Therefore, the formulations together with
some formulations valid within the remaining frequency range
can be useful for some engineering applications as well as
for some further theoretical analysis of the total sound power
radiated by an axisymmetrically excited plate in an acoustic
fluid.
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