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STOCHASTIC ANALYSIS IN THE ACOUSTICS OF DAMPED SOUNDS

ABSTRACT

A stochastic model of sound propagation in damping medium is proposed. It consists of: (1) Ito’s stochastic differential equation
describing the sound propagation, (2) a potential which models the damping effects. However, due to presence of path integrals
this model is elaborate and time consuming, hence inappropriate for numerical simulations and/or model calibrations. To make it
simpler we usde the classical results of stochastic analysis; Feynman-Kac formula and Girsanov tansformation obtaining easy-to-use
computational procedure for practical purposes.
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ANALIZA STOCHASTYCZNA W BADANIACH PROPAGACJI DŹWIĘKU W OŚRODKACH TŁUMIĄCYCH

W pracy przedstawiono stochastyczny model propagacji dźwięku w ośrodku tłumiącym. W badaniach, do modelowania propagacji
dźwięku, zastosowano stochastyczne równanie różniczkowe Ito. Zjawiska tłumienia zamodelowano z zastosowaniem potencjału V (x).
Ze względu na obecność całki po trajektoriach opracowanie modelu jest czasochłonne. W celu uproszczenia modelu i umożliwienia jego
zastosowania w symulacjach numerycznych wykorzystano wyniki klasycznej analizy stochastycznej. Zastosowanie wzoru Feynmana-
-Kaca i transformacji Grisanova umożliwiło opracowanie łatwej w użyciu procedury obliczeniowej do zastosowań praktycznych.

Słowa kluczowe: przetwarzanie sygnałów akustycznych, wzór Feynmana-Kaca, procesy stochastyczne

1. INTRODUCTION

Sound propagation is a complex phenomenon. Spatial sources
locations and medium damping properties have a strong in-
fluence on the whole process. In this paper we are going to
study only the quantitative aspects of the simplest version of
the problem – one source and one receiver. Our goal is to find
a mathematical model and easy-to-use numerical procedure. In
order to describe sound propagation we apply Ito’s stochastic
differential equation (SDE). Although these types of equations
are rudimentarily used to model diffusion processes rather than
sound propagation phenomenons, we find in the mathematical
literature attempts to extend this tool to wave phenomenons
(Bakhtin and Mueller 2010, Dalang, Mueller and Tribe 2008,
Pal and Shkolnikov 2013, Chatterejee 2013). Beside of Ito’s
equation an integral part of the model is a potential function
V (x) in the space variables x, which is responsible for the
damping effect. However, this effect depends on the whole tra-
jectory of x(t), a solution of Ito’s equation and values V (x(t))
of the potential on the observation interval [0,T ]. In the result
any calculation on the model, or simulations of the damping
effect must be onerous and time consuming. The purpose of
this short note is to eliminate this defect. In order to achieve
this goal we apply two classical tools of stochastic analysis; the
Feynman-Kac formula and Girsanov transformation. In this
way we are able to simplify the procedure since the resulting
formulae do not include path-integrations.

The paper is organized as follows. In the two subsequent
sections we introduce the model, quote the Feynman-Kac and
Girsanov theorems. In section 4 we show how these tools could
be used to eliminate the path integration at the extra cost of
solving an ordinary differential equation of the low order. In

the section 5 we explain how to transform our model into step-
by-step a procedure leading to practical calculations and/or
model calibration.

2. THE MODEL

Let us consider the simplest experiment of sounds propagation
consisting with one source and one receiver, the both located
in the fixed, different points of space S and R. Assume that
sound volume level (SVL) is observed and measured at some
fixed point can be described by Ito’s equation (Karataz and
Shreve 1991, chapter 5)

X(t) = x+
∫ t

s
f (X(r))dr+

∫ t

s
g(X(r))dW (r). (1)

In theory of diffusion the quantity X(t) describes the position
of single particle at time instant. If the particles are absorbed
by the medium, then a special function V (x), called a potential
is introduced. According to the general theory of diffusion
V (X(t)) is the rate of ’killing’ the particles at the position X(t)
(Ito and McKean 1970, chapter 5). Since V (x) acts similarly
as a dissipative force, we adopt it as a model of damping factor.
Indeed, in diffusion processes the potential V (x) has a strong
influence on any aspect of X(t) behavior modifying the effect
of f (x) and g(x). Additionally, V (x) decreases the probability
total mass as the effect of killing. The action of V (x) on X(t)
is described by the famous Feynman-Kac theorem (Karataz
and Shreve 1991, chapter 5, theorem 7.6).

Theorem 1. Let (a) h : R→ R satisfies polynomial growth
condition, i.e., |h(x)| ≤M (1+ |x|n), n≥ 1, (b) V : R→ [0,∞),
(c) f ,g are globally Lipschitz, i.e., | f (x)− f (y)| ≤M |x− y|.

? Lublin Technical University, Department of Quantitative Methods in Management, Lublin, Poland, e-mail t.banek@pollub.pl

1



T. BANEK

STOCHASTIC ANALYSIS IN THE ACOUSTICS OF DAMPED SOUNDS

Then (!) (1) has unique strong solution X (t), t ∈ [0,T ] for any
initial condition X (s) = x, (!!) the solution u of the equation

(∂s +A +V )u(s,x) = 0 (2)

where

A ≡ g2 (x)
2

∂
2
xx + f (x)∂x

with the Cauchy condition u(T,x) = h(x), is of C1,2 ([0,T ] ,R)
class and is given by the formula

u(s,x) = EP

[
h(X (T ))exp

∫ T

s
V (X (t))dt

]
(3)

where EP denotes expectation with respect to the probability
measure P, (Ω ,z,P) is a probability space where all stochas-
tic objects, i.e., the processes W (t), X (t) are defined.

Remark 2. If h is a characteristic function of fixed interval
[a,b], i.e., h(x) = 1 if x ∈ [a,b], and h(x) = 0 if x /∈ [a,b], then

u(s,x) = P [X (T ) ∈ [a,b]] (4)

Remark 3. In our model (4) gives a probability that the value
of damped sound is included in [a,b].

Remark 4. As was mentioned in the introduction, application
of the formula (3) is elaborate and time consuming. Any simu-
lation must operate on the whole sampled trajectory of X (t)
because of the path integral in the exponent of the right hand
side of (3). This makes the formula useless for practical pur-
poses. In the case when additionally the model characteristics,
i.e., f (x), g(x), V (x), are uncertain and are known only with
some error, hence many simulations are needed, the model
seems to be useless too. However, in the next section we intro-
duce a second tool, Girsanov transformation, which allows to
eliminate the path integrations in (3).

3. MEASURE TRANSFORMATION

Measure transformation is a powerful method in Probability
Theory. We introduce now a particularly important example
known as Girsanov theorem (Karataz and Shreve 1991, chap-
ter 3, theorem 5.1). For a function κ : R→ R, let define a new
process w(t) on (Ω ,z,P) given by the formula

w(t) =W (t)−W (s)−
∫ t

s
κ (X (r))dr (5)

and a set function

Q(A) =
∫

A
Λ

T
s dP (6)

for A ∈z, where for 0≤ s < T

Λ
T
s = exp

[∫ T

s
κ (X (t))dW (t)− 1

2

∫ T

s
κ2 (X (t))dt

]
. (7)

Theorem 5. (Girsanov) Let κ be a continuous function κ ∈
C (R) with linear growth |κ (x)| ≤ M (1+ |x|). Then Q is
a probability measure on (Ω ,z), and w(t) given by (5)
is a Wiener process with respect to Q. The process X (t) on the
new probability space (Ω ,z,Q) satisfies the equation

X (t) = x+
∫ t

s

[
f (X(r))+g(X(r))κ (X (r))

]
dr

+
∫ t

s
g(X(r))dw(r).

(8)

4. APPLICATION

In order to apply the Girsanov theorem to the formula (3), we
shall use Ito’s formula to remove the stochastic integral in (7).

Assume, that K ∈C2 (R) satisfies

g(x)K′ (x) = κ (x) . (9)

Then from Ito’s formula∫ T

s
κ (X (t))dW (t) =K (X (T ))−K (X (s))

−
∫ T

s
A K (X (t))dt

(10)

and consequently (7) now takes the form

Λ
T
s = exp

{
K (X (T ))−K (x)

−
∫ T

s

[
A K (X (t))+

1
2
κ2 (X (t))

]
dt
}
.

(11)

Conclusion 6. For any H : R→ R satisfying polynomial
growth condition, we have

EQ [H (X (T ))] (12)

=EP
[
H (X (T ))Λ

T
s
]

=EP

[
H (X (T ))exp

{
K (X (T ))−K (x)

−
∫ T

s

(
A K (X (t))+

1
2
κ2 (X (t))

)
dt
}]

=exp [−K (x)]EP

[
φ (X (T ))exp

{
−
∫ T

s

(
A K (X (t))

+
1
2
κ2 (X (t))

)
dt
}]

, (13)

where EQ denotes expectation with respect to the measure Q,
and

φ (x) = H (x)expK (x) . (14)

Conclusion 7. If K solves ordinary differential equation

A K (x)+
1
2
[
g(x)K′ (x)

]2
+V (x) = 0, (15)

then

EP

[
φ (X (T ))exp

∫ T

s
V (X (t))dt

]
=exp [K (x)]EQ [H (X (T ))] .

(16)
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Theorem 8. If K (x) ∈ C2 (R) satisfies (15), is nonnegative
(K (x)≥ 0), or K (x) has polynomial growth, then

EP

[
h(X (T ))exp

∫ T

s
V (X (t))dt

]
=exp [K (x)]EQ [h(X (T ))exp [−K (X (T ))]] .

(17)

Proof. Put

H (x) = h(x)exp [−K (x)] . (18)

Now

EP

[
h(X (T ))exp

∫ T

s
V (X (t))dt

]
from (13)(18)

=EP

[
H (X (T ))expK (X (T ))

∫ T

s
V (X (t))dt

]
from (15)

=EP

[
H (X (T ))expK (X (T ))

−
∫ T

s

(
A K (X (t))+

1
2
κ2 (X (t))

)
dt
]

from (11)

=exp [K (x)]EP
[
H (X (T ))Λ

T
s
]

from (12)

=exp [K (x)]EQ [H (X (T ))]

=exp [K (x)]EQ [h(X (T ))exp [−K (X (T ))]] .

The assumptions on K (x) are needed to guarantee the
existence of the integral in the right hand side of the last
equality.

Remark 9. In the last theorem the elimination of the path
space integration promised in the Introduction takes place. In-
deed, this integration in the left of (17) is annihilated and does
not appear in the right. The expectation on the left applies to
the process influenced by the potential V (x). Transforming the
initial measure P into a new measure Q we get an equivalent
expression in which the path integral is absent, i.e., process
X (t) under the new measure is influenced by V (x)≡ 0. More-
over, the expectation on the right of (17) must be computed at
the final time T only, what makes any simulations or numerical
calculations much easier. However, in order to do so one must
solve the ordinary differential equation (15), getting K (x) for
given V (x). Next, from (9) we have κ (x) what allows to define
the right hand side of (8) which describes the evolution of X (t),
and the value of X (T ). The simulated values of X (T ) can be
substituted in the right of (17). Concluding one may say, that
at a small price of the process (1) complication we replace the
path space averaging in the left of (17), with averaging the
values of modified process, but taken at the final time only.

5. PROCEDURE IN STEPS

We describe now a procedure which systematizes the results of
the previous sections making them a machinery for numerical
computations of u(s,x) given in (3).

Step 1. Given f ,g,V , find K (x) satisfying

g2 (x)
2

K′′ (x)+ f (x)K′ (x)+
1
2
[
g(x)K′ (x)

]2
+V (x) = 0.

Step 2. Simulate X (T ) given by

X (T ) = x+
∫ T

s

(
f (X(t))+g2(X(t))K′ (X (t))

)
dt

+
∫ T

s
g(X(t))dw(t)

for some Wiener process w(t), and K (x) obtained in Step 1.
Denote Xi (T ) the value of i-th simulation. The stochastic inte-
gral approximate by finite sums

∑
j∈N

g(X(t j))
[
w
(
t j+1

)
−w(t j)

]
.

Step 3. Substitute the values Xi (T ) into h(x), and exp [−K (x)]
getting the sets {h(Xi (T ))} and {exp [−K (Xi (T ))]}.

Step 4. Average the product h(X (T ))exp [−K (X (T ))] with
respect to Q, i.e, calculate

EQ [h(X (T ))exp [−K (X (T ))]]

≈ ∑
i∈N

h(Xi (T ))exp [−K (Xi (T ))]/N
(19)

6. FINAL REMARKS

In his section we recall some notions of acoustic analysis used
by practitioners and indicate the counterparts in our model. Let
P denotes acoustic pressure, P0 reference pressure, L sound
level measured in a fixed space point is defined in formula

L = 10log
1
∆

∫
∆

P2 (t)
P2

0
dt

where ∆ is an interval of averaging. If ∆ = [t−δ , t], then for
the moving average L(t) we have

L(t) = 10log
1
δ

∫ t

t−δ

P2 (s)
P2

0
ds

which for δ close to zero, behaves similarly to the trajectories
of X (t) described in section 2. Let Li, i = 1, ...,n, are values
of L computed for i-th observation in a fixed point of acoustic
space. Then, a common practice in acoustics is to define the
acoustic average LA by formula

LA = 10log
1
n

n

∑
i=1

10Li/10

and consequently, for moving L(t), the acoustic moving ave-
rage LA (t) by

LA (t) = 10log
1
n

n

∑
i=1

10Li(t)/10.
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Two important properties of this kind of averaging should
be mentioned. First, there is no need to known the true prob-
ability distribution functions (pdf) of Li for LA to compute,
and second, this averaging is not additive. If the first thing has
some advantages over the averaging based on the pdf, specially
when a date set is small, then the second makes difficulties
when the date set is growing. In particular, the non-additivity
makes recurrence computing practically unavailable what is in
sharp contrast with probability methods.

The averaging in our model is certainly additive and for-
mula (19) is convenient in calculations for samples of any size.
Recurrence formulae are also easily available.
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