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ABSTRACT

In this paper we describe Bayesian inference-based approach to the solution of parametric identification problem in the context of
updating of a finite element model of a structure. The proposed inverse solution is based on Monte Carlo filter and on the comparison
of structure displacements extracted using digital image correlation method during a quasi-static loading and the corresponding
displacements predicted by finite element method program. Our approach is applied to the problem of material model parameter
identification of an aluminum laboratory-scale frame. The results are also verified by comparing the Monte Carlo filter-based solution
with the analytical solution obtained using Kalman filter.
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ZASTOSOWANIE FILTROW MONTE CARLO DO OPARTEGO NA WIDZENIU KOMPUTEROWYM
BAYESOWSKIEGO STROJENIA MODELU MES

Artykut przedstawia zastosowanie podejscia opartego na wnioskowaniu bayesowskim do problemu identyfikacji parametrycznej
w kontekscie strojenia modelu MES konstrukcji. Proponowane rozwiqzanie odwrotne opiera sig na filtrze Monte Carlo oraz porow-
naniu przemieszczen konstrukcji otrzymanych metodq korelacji obrazow cyfrowych podczas quasi statycznej proby obcigzeniowej
i odpowiadajqcych im przemieszczen przewidywanych przez program oparty na metodzie elementow skoriczonych. Nasze podejscie
zostato zastosowane do identyfikacji parametru modelu materiatu aluminiowej ramki laboratoryjnej. Otrzymane wyniki poréwnano
z wynikami otrzymanymi za pomocq filtru Kalmana.

Stowa kluczowe: wnioskowanie bayesowskie, identyfikacja parametryczna, widzenie komputerowe, strojenie modelu, filtr Monte

Carlo

1. INTRODUCTION

Model updating or model calibration is an important step in the
development of computational models and it is an integral part
of the verification, validation and uncertainty quantification
(Oden et al. 2010; Roy and Oberkampf 2011). Model calibra-
tion ensures that the model predictions fit the corresponding
observations better. It is done by identification of selected
model parameters like elastic moduli using experimental obser-
vations and inverse analysis. This calibration process is often
difficult because of the uncertainties caused by measurement
errors and limited number of observations. The unavoidable
uncertainty has to be treated mathematically using one of the
well-developed representations like for example fuzzy sets the-
ory, Dempster-Shafer theory or probability theory (BabuSka
et al. 2008).

In the last few years Bayesian updating and validation
came into the forefront of interest (Mares et al. 2006). Bayesian
updating is a probabilistic approach to model updating process
in which the uncertainty quantification is taken into considera-
tion together with the prior knowledge about model parameters.
Bayesian updating is also sequential in nature and is some-
times called Bayesian filtering. For example the well-known
extended Kalman filter (EKF) was applied by Maier et al. for
stochastic estimation in fracture mechanics (Maier et al. 2006).
Although EKF has been widely applied, it is only reliable for
almost linear models. For highly-nonlinear models, Monte
Carlo filter may be a viable alternative. Nasrellah and Manohar

proposed a strategy for combining finite element method and
Monte Carlo filter to tackle the problem of structural system
parameter identification (Nasrellah and Manohar 2011).

There is also a growing interest in using optical measure-
ments for solving parametric identification problems encoun-
tered in the context of mechanics of structures and materials.
Furukawa and Pan (Furukawa and Pan 2010) applied computer
vision-based full-field measurements and Kalman filter for
on-line characterization of anisotropic materials.

Reliable model predictions are the key elements of struc-
tural health monitoring (SHM) systems. Moreover, structural
health monitoring applications rely heavily on the sequential
identification of component or structure states and/or parame-
ters for damage detection, localization and prognosis. Ching et
al. compared the particle filter and the extended Kalman filter
in the problem of Bayesian state and parameter estimation of
uncertain dynamical systems (Ching et al. 2006).

In this paper we describe a Bayesian approach to up-
dating of a structural finite element model. The updating is
based on computer vision-based measurements of structure
displacements and Monte Carlo filter estimation.

The paper is organized as follows. In the second section
we give a short introduction to dynamic Bayesian networks
and Monte Carlo filters. The next section presents the example
application of our approach to an identification problem. In
the fourth section we describe the computer experiments and
results. The last section contains final remarks.
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2. PARTICLE FILTER FOR SEQUENTIAL
ESTIMATION

Particle filter (PF) is usually introduced in the probabilistic
context for inference in dynamic Bayesian networks. Dynamic
Bayesian network (DBN) is a Bayesian network which repre-
sents a temporal probability model, see (Russel and Norvig
2010) for a very good introduction to DBNs. The well-known
Kalman filter used to model linear discrete dynamic systems,
is an example of dynamic Bayesian network with continuous
variables and linear Gaussian conditional distributions. On the
other hand, DBN can model arbitrary distribution in which the
joint distribution over the sequence of K observed variables
y1:x and state variables Xo.x is given by

K
p(xo:x,¥1:x) = p(%0) [ | P(xkl%e—1) P(yi|%t), (1)

k=1
where p(xi|x;_1) is the transition model (here first-order
Markov chain), p(yi|xx) is the observation model and p(xo)
is the prior distribution of initial states. Figure 1 shows the
Bayesian network structure corresponding to the first-order
Markov process for the state variables and the observed vari-
ables conditioned on the state variables.

X1 XZ xk—1 Xk Xk+1 XK—1 xK
I_I—m_ state variables

observation variables
Yy Y, Yier Y Yin Yier Vi

Fig. 1. Dynamic Bayesian network representing probabilistic
dependence between state and observed variables

In the sequential estimation problems, we are mainly in-
terested in recursive computations of the posterior distribution
p(Xk|yx), but in general exact inference is intractable so dif-
ferent approximate methods have been developed so far. The
most successful algorithm for approximate inference is based
on sequential Monte Carlo sampling and approximating the
posterior using N particles to obtain the empirical distribution
Py (Xk).-

The basic particle filter algorithm consists of the initializa-
tion of the variables and one “for* loop with four steps inside,
see also figure 2 for the schematic. In the initialization phase
a population of N initial-state samples is created by sampling
from the prior distribution p(xp). Then in the main loop for
each time step the prediction and update phases are repeated
(Russel and Norvig 2010):

1) Particles are propagated forward by sampling the next
state value x;, given the current value x;_; for the parti-
cle, based on the transition model p(x|X;_1).

2) Each particle is weighted by the likelihood it assigns to
the new evidence, p(y|xx)-

3) Particles are resampled to generate a new population of N
particles. Each new particle is selected from the current
population; the probability that a particular sample is se-
lected is proportional to its weight (the new samples are
unweighted).

4) Stopping criterion is checked (if not satisfied the first step

of the loop is started again).

Define a prior and generate N samples
(parameters) from the prior

L]

= A Use transition model to compute new -
] values of parameters
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Use computational model to obtain
model predictions for given parameters

L]

Model predictions

Measurements ‘

—

Use observation model
To compute weights of particles

v

Use resampling to obtain
new particles (parameters)
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Fig. 2. Schematic description of basic particle filter algorithm

3. EXAMPLE APPLICATION

In this section we show how our approach can be applied for
a finite element model updating of a laboratory frame shown in
figure 3 (Miller 2011). The examined structure is a two-storey
frame, made from an aluminum alloy with Young modulus
E =70.77 GPa and Poisson ratio v = 0.3. The height of the
frame is 40 cm and the width is 48.0 cm. The beams and
columns have a rectangular cross-section 2.5x0.6 cm and the
columns are bolted to a steel basement.

deslgned markers

uEye UI-1495LE-C-HQ
Thela SL183M

Fig. 3. View of two-storey aluminum frame
and experimental stand
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In the experimental part of our work we performed se-
veral quasi-static experiments applying a concentrated force
in the middle of the top beam or in the upper right corner (see
the view of the experimental stand in figure 3). The value of
the applied load was measured in near-real time by the digital
force gauge Lutron FG-5000A connected to a laptop computer.
During the experiments we also measured the horizontal and
vertical displacements of selected frame nodes. The measure-
ments were done using specially designed markers attached to
the frame (see figure 4) and a computer vision-based system.
The system was developed by the first Author with the aid of
OpenCV Library (Bradski and Kaehler 2008).

Fig. 4. View of specially designed marker

More details can be found in (Tekieli and Stonski 2013).
The system was able to track in near-real time the positions of
markers with the accuracy of about 0.15mm by applying the
digital image correlation (DIC) method.

In numerical experiments, we applied the finite element
method. The frame was treated as a 2D model using standard
1D two-node frame elements (see the diagram of the frame FE
model in figure 5). The FEM computations were implemented
and carried out in our system.

*A

3 B
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! Bmim cross-section
: [ dimensions
" 256mm
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L
' discretization of the
¢ 480x400mm aluminum frame model
‘ with nodes numbering
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Fig. 5. Finite element discretization of 2D model of frame

4. EXPERIMENTS, RESULTS AND DISCUSSION

In this section we describe the experiments we conducted, show
the results of the model updating and discuss the main findings.
All numerical experiments were done using our computer ap-
plication developed in C++. The graphical user interface of the
application is shown in figure 6.

Having the two sources of information about the frame
displacements in near-real time, it was possible to solve the
material model parameter identification problem using filtering.
In our computer experiments, we applied the particle filter as
the basic tool for the model updating and compared the results
with the standard Kalman filter-based results. We assumed that
the state vector x for both filters consisted of only one state
variable x; which represented Young modulus in time step k.
The observed variables y; were the displacements of frame six
points (with markers). For both filters, the transition model for
the evolution of Young modulus was static, i.e. xy = x;_;. The
prior distribution for the initial state was a normal density dis-
tribution p(xo) = .4 (xo|1t, 52), with mean value u = 70 GPa
and standard deviation o, = 7 GPa.

The observation model was represented by a linear Gaus-
sian conditional distribution

p(yelxe) = A (yilye = (i), Zy), 2

where y£ M (x;) denotes the displacements of the frame points

computed by FEM for the assumed Young modulus value and
X, = 021 is the isotropic covariance matrix of measurement
errors. All presented results were obtained for particle filters
with N = 400 particles representing Young modulus posterior
distribution Py (x).

The results of two numerical experiments for Young mo-
dulus sequential estimation in the case of vertical force are
given in figures 7 and 8. The plots show the evolution of mean
values of the posterior distributions for Young modulus, es-
timated using particle filters and Kalman filter (for the first
experiment only).

There are also shown two horizontal lines that represent
the reference value E = 70.8 GPa, taken from (Miller 2011),
and the mean value computed for the values estimated for
each measurement, respectively. In the first experiment, the
mean value of Young modulus estimated by particle filter was
E = 67.0 GPa and the corresponding result for the Kalman
filter was also E = 67.0 GPa.

These results are rather close to the reference value (the
relative error less than 5%). In the second experiment, the
mean estimated value of Young modulus was E = 68.4 GPa.
The plots also show the evolution of the measurement errors
defined as the difference between DIC-based and FEM-based
displacements of nodes. It is visible that the measurement er-
rors are strongly correlated with the estimated values of Young
modulus.

Figures 9 and 10 show the corresponding estimation re-
sults obtained for two experiments in the case of horizontal
force. In the first experiment, the mean value of Young mod-
ulus estimated by particle filter was £ = 70.3 GPa and in the
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second experiment the mean estimated value of Young modu-
lus was E = 70.4 GPa.

Note that in the case of horizontal forces, the estimated
values are very close to the reference value (the relative error
less than 1%).

The smaller error is caused by the fact that the frame
rigidity in the horizontal direction is about three times smaller

than in the case of vertical force direction and also by the fact
that the maximum accuracy of our DIC-based vision system is
about 1 pixel in both directions.

Finally, the plots in figures 11 and 12 present the valida-
tion of the updated FE frame model in the form of the compar-
ison of the displacements measured by the vision system and
predicted by the updated model.

Filename: D://CAPTURES/Movies02/001 avi
Record Movie

Camera Status:
PREPARE CAM AND GAUGE

Gauge Status:

Frames: o

Force Val (N) 0
Select Markers

SELECT MARKERS Marker size (px): 302

Type X ¥ Size ~
Node 3201 239 30
Node 513 1348 30
Node 3167 1381 30
Element 1871 239 30
Element 1842 1381 30

v

Frames: 0

Measure Displacements
MEASURE DISPLACEMENTS
20/

Markers to save: 62 Search range (px):

Fig. 6. View of application graphical user interface
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Fig. 7. Plot of sequential estimation of Young modulus using Kalman filter and particle filter,
in case of vertical force (first experiment)
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Fig. 8. Plot of sequential estimation of Young modulus using particle filter, in case of vertical force (second experiment)
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Fig. 9. Plot of sequential estimation of Young modulus using particle filter, in case of horizontal force (first experiment)
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Fig. 10. Plot of sequential estimation of Young modulus using particle filter, in case of horizontal force (second experiment)
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Fig. 11. Validation ofq FE model updating using measured and computed vertical displacements
at 25" node under action of vertical load
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Fig. 12. Validation of FE model updating using measured and computed horizontal displacements
at 33" node under action of horizontal load
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5. FINAL REMARKS

In this paper an example application of the Monte Carlo filter
for sequential finite element model updating was presented.
The updating procedure was based on measurements of struc-
ture displacements using computer vision techniques. In par-
ticular the problem of identification of Young modulus for an
aluminum laboratory-scale frame was investigated.

Two cases of quasi-static concentrated force acting on
the frame were considered. It was shown that the proposed se-
quential approach using particle filter together with computer
vision-based displacement measurements and FEM-based pre-
dicted displacements are able to successfully solve the material
parameter identification problem. In both cases, the estimated
values of Young modulus were close to the reference value.

Moreover, the comparison of PF-based identification re-
sult with Kalman filter solution verified successfully our im-
plementation of the particle filter. It will allows us to test our
approach to solving nonlinear identification problems.
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