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FINITE ELEMENT IMPLEMENTATION OF NONLINEAR THERMO-ELASTICITY
AS TYPICAL COUPLING OF DIFFUSION AND MOMENTUM BALANCE

ABSTRACT

The formulation and algorithmic aspects of nonlinear thermo-elasticity are reviewed in the paper. The attention is focused on coupling
due to thermal expansion and temperature dependence of elastic model parameters, and on the consistent linearization of the ensuing
nonlinear set of equations for two-field finite elements. Non-stationary heat flow, static loading and small strains are assumed.
The solutions of some benchmark examples, obtained using the developed finite element environment FEMDK, are presented. The
formulation has a more general application domain in the context of arbitrary coupling of a nonstationary diffusion proces and
momentum balance.
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NIELINIOWE PROBLEMY TERMOSPRĘŻYSTOŚCI

W artykule przedstawiono sformułowanie i aspekty algorytmizacji dla nieliniowych problemów termosprężystości. Skupiono się na
problemie sprzężenia wynikającego z rozszerzalności cieplnej oraz zależności parametrów materiałowych od temperatury. Przeprowa-
dzono konsystentną linearyzację nieliniowego układu równań opisującego rozpatrywany problem i zaproponowano dwupolowy
element skończony. Rozważania dotyczą niestacjonarnego przepływu ciepła przy założeniu statycznego charakteru obciążeń mechan-
icznych oraz małych odkształceń. Przedstawiono rozwiązania wybranych zadań benchmarkowych. Obliczenia wykonano przy użyciu
rozwijanego środowiska obliczeniowego FEMDK, opartego na metodzie elementów skończonych. Zaprezentowane sformułowanie
może mieć bardziej ogólne zastosowanie dla dowolnego przypadku sprzężenia niestacjonarnego procesu dyfuzji z problemami
opisywanymi przez równania bilansu pędu.

Słowa kluczowe: termosprężystość, problem nieliniowy, metoda elementów skończonych, oprogramowanie

1. INTRODUCTION

The aim of the paper is to present the formulation of nonli-
near thermo-elasticity together with a suitable finite element
algorithm for nonstationary processes and some examples of
benchmark finite element computations. The computations are
performed using software environment FEMDK which allows
the analyst to consider various physical fields coupled to me-
chanics. The application domain are engineering materials,
especially concrete, so eventually coupled processes such as
the ones covered in monographs Gawin (2010); Kuhl (2005)
are supposed to be analyzed.

The mechanical model considered in the paper is statics
of nonlinearly elastic materials, but it is understood here as
a prototype of a general nonlinear constitutive model for the
solid skeleton of the material (with some additional complexity
the model could incorporate damage, plasticity or cracking).
On the other hand, the heat conduction model used in the paper,
is a prototype of many nonstationary diffusion processes occur-
ring in engineering materials, including moisture transport and
related chemo-physical processes. This is because the partial
differential equations governing the processes are quite similar.

A critical review of finite element analysis of solid thermo-
mechanics is performed e.g. in Nicholson (2008). The ther-
modynamic foundations of the theory are covered for in-
stance in Jirasek and Bažant (2002); Lemaitre and Chaboche
(1990); Lubliner (1990); Maugin (1992); Ottosen and Ristin-
maa (2005).

Static loading and linear kinematic equations are assumed
in this paper. Small strain thermo-elasticity is a well-known the-
ory. In this paper the aim is to incorporate arbitrary nonlinearity
and coupling in the formulation. This means that nonlinear
elasticity is admitted and, next to thermal expansion, the me-
chanical and thermal material properties (e.g. Young’s modulus
and/or conductivity) are considered as time and temperature-
dependent.

The paper is organized as follows. In Section 2 the strong
and weak forms of the mathematical model are reviewed for the
simple coupling due to thermal expansion. Algorithmic aspects
related to boundary conditions are mentioned. In Section 3 the
formulation for nonlinear thermo-elasticity with temperature-
dependent model parameters is covered. Algorithmic aspects
related to time integration are discussed. The developed simula-
tion environment FEMDK is briefly described in Section 4 and
its features are listed. In Section 5 example solutions of cou-
pled thermo-elasticity problems are presented. They concern
stationary or non-stationary temperature and stress evolution
in a bar, a square specimen and a thick-walled cylinder. Final
remarks in Section 6 complete the paper.

2. REVIEW OF LINEAR THERMO-ELASTICITY

2.1. Mathematical model and discretization

Nonstationary heat transfer is described as follows, cf. Buckley
(2010); Nicholson (2008).The balance equation, valid at each
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point xxx in volume Ω at each time instant t from interval [t0, t f ],
reads:

ρcΘ̇+∇
Tqqq = r ∀xxx ∈Ω ∀t ∈ [t0, t f ] (1)

where ρ [kg/m3] is the density, c [J/(kg deg)] is the specific
heat capacity, Θ = T −T0 [deg] is the relative temperature, i.e.
its increase with respect to strain-free (initial, reference) tem-
perature T0, qqq [J/(m2 s)] is the heat flux density, r [J/(m3 s)] is
the heat source density. Kelvin’s effect is neglected, cf. Ottosen
and Ristinmaa (2005). The balance equation incorporating the
Fourier law qqq =−ΛΛΛ∇Θ is written as:

∇
T(ΛΛΛ∇Θ)+ r = ρcΘ̇ (2)

where ΛΛΛ [W/(m K)] is the thermal conductivity matrix.
For isotropic materials one can write this parabolic second

order partial differential equation as:

∂ 2Θ

∂x2 +
∂ 2Θ

∂y2 +
∂ 2Θ

∂ z2 +
r
k
= ρc

∂Θ

∂ t
(3)

where k [W/(m K)] is the thermal conductivity. The heat trans-
port equation (2) or (3) must be complemented by proper initial
and (essential or natural) boundary conditions. For stationary
heat transfer the right-hand side is zero and the elliptic second
order partial differential equation called Poisson equation is
retrieved.

Before finite element discretization is used, the local
model must be reworked into a global model in weak form:∫

Ω

vΘρcΘ̇dΩ+
∫
Ω

(∇vΘ)
T

ΛΛΛ∇ΘdΩ =
∫
Ω

vΘr dΩ−

−
∫
Γ

vΘqn dΓ ∀vΘ ∈VΘ,h

(4)

where vΘ is the weight function belonging to the space VΘ,h of
piecewise polynomials that vanish on ΓΘ and qn = qqqTnnn denotes
the heat flux normal to the body surface, assumed to be positive
outwards (nnn is the vector normal to surface Γ ). This integral
equation must be valid together with essential boundary con-
ditions Θ = Θ̂ on ΓΘ, while the natural boundary condition
qn = q̂n on Γq is incorporated in eq. (4).

The standard equation of equilibrium (momentum ba-
lance) valid at each point of the considered isotropic solid is
written as:

LLLTσ+ρbbb = 0 ∀xxx ∈Ω (5)

where LLL is the suitable differential operator matrix, σ is the
stress tensor in vector form, bbb is the body force vector, usually
related to gravitation. We limit our interest to linear elastic con-
stitutive equations incorporating thermal expansion as initial
strain

σ= EEE(ε−εΘ) , εΘ = αΘΠΠΠ, ΠΠΠ = [1 1 1 0 0 0]T (6)

where EEE is the Hooke operator, ε is the strain, α is the thermal
expansion coefficient. One obtains the equilibrium equations
as follows:

LLLTEEEε−LLLTEEEαΘΠΠΠ+ρbbb = 0 (7)

The weak form of the equilibrium equation is the virtual
work principle:∫

Ω

(LLLvvvu)
TEEEεdΩ−

∫
Ω

(LLLvvvu)
TEEEαΘΠΠΠdΩ =

∫
Ω

vvvT
uρbbbdΩ+

+
∫
Γ

vvvT
u ttt dΓ ∀vvvu ∈Vu,h

(8)

where ttt is the traction vector and vvvu is the weight function be-
longing to the space Vu,h of piecewise polynomials vanishing
on Γu. This equation is valid together with essential boundary
conditions uuu = ûuu on Γu.

The following special cases of natural boundary condi-
tions can be considered for the thermal sub-problem, cf. fi-
gure 1:

– convection qn = −hc(Tc − T ), where Tc is the abso-
lute temperature of fluid moving around the sample, hc

[J/(m2s)] is heat transfer coefficient;
– radiation or absorption qn = −hr(T 4

r −T 4), where Tr –
absolute temperature of another body which radiates heat
towards the considered body, hr – emissivity coefficient
(including Boltzmann constant). This case can be refor-
mulated into the convection form of boundary conditions,
but with a temperature-dependent heat transfer coefficient:
hc = hr(T 2

r +T 2)(Tr +T ).

convection

radiation

known
temperature

insulated
boundary

known
heat flux

Fig. 1. Possible boundary conditions
for heat transport problem

2.2. Algorithm and discretization – staggered scheme

The considered theory implies the solution of the evolutionary
problem in time and space. The space discretization is pro-
vided by the FEM. We first focus on eq. (4) and introduce
interpolation of the relative temperature as Θ = NNNΘΘ̌ΘΘ, where
NNNΘ denotes the shape function matrix and Θ̌ΘΘ the vector of
nodal temperature values.

This results in the following matrix equation:

CCC ˙̌
ΘΘΘ+HHHΘ̌ΘΘ = hhh(t) (9)
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in which

CCC =
∫
Ω

NNNΘ
TNNNΘρcdΩ , HHH =

∫
Ω

BBBΘ
T

ΛΛΛBBBΘ dΩ (10)

are the heat capacity and conductivity matrices, respectively
(BBBΘ = ∇NNNΘ), and the right-hand side vector hhh reads:

hhh =
∫
Ω

NNNΘ
Tr dΩ−

∫
Γq

NNNΘ
Tq̂n dΓ (11)

Eq. (9) must be integrated over time. At time moment
t +∆t we have:

CCC ˙̌
ΘΘΘ

t+∆t
+HHHΘ̌ΘΘ

t+∆t
= hhht+∆t (12)

The temperature Θt+∆t can be represented by the generalized
midpoint rule

Θ
t+∆t = Θ

t +∆t[(1− γ)Θ̇t + γΘ̇
t+∆t ] (13)

Different values of γ generate different algorithms (uncondi-
tionally stable backward Euler algorithm for γ = 1 is the most
frequently used option).

For stationary heat transfer eq. (9) simplifies to:

HHH Θ̌ΘΘ = hhh (14)

If the convection boundary condition is used with the heat
transfer equation, then new arrays emerge with integrals over
the relevant part of the body surface:

(HHH +HHHc)Θ̌ΘΘ = hhh+hhhc (15)

where

HHHc =
∫
Γc

NNNΘ
TNNNΘhc dΓ , hhhc =

∫
Γc

NNNΘ
Thc(Tc−T0)dΓ (16)

If the radiation boundary conditions are used for the heat
transfer equation, then the problem becomes nonlinear and
an incremental-iterative solution is necessary.

For the coupled model the discretization (global appro-
ximation) of the displacements uuu = NNNuǔuu and the temperature
Θ = NNNΘΘ̌ΘΘ, as well as the respective weighting functions in the
Galerkin manner, lead to:

[
000 000
000 CCC

][ ˙̌uuu
˙̌
ΘΘΘ

]
+

[
KKK KKKΘ

000 HHH

][
ǔuu
Θ̌ΘΘ

]
=

[
fff
hhh

]
(17)

where

KKKΘ =
∫
Ω

BBBu
TEEEαΠΠΠNNNΘ dΩ ,

fff =
∫
Ω

NNNu
TρbbbdΩ+

∫
Γ

NNNu
Tttt dΓ

(18)

and BBBu = LLLNNNu. It is noted that the coupling is in one direction
and the two matrix equations can be decoupled. This means
a staggered scheme of solution can be adopted, i.e. first the
thermal sub-problem is solved to obtain the temperature dis-
tributions at the assumed set of time instances and then the
mechanical sub-problem is solved to obtain the evolution of
the temperature-dependent stresses in time.

3. NONLINEAR THERMO-ELASTICITY

3.1. Mathematical model and discretization

The mechanical and thermal material properties (e.g. Young’s
modulus and/or conductivity) are now considered as time and
temperature-dependent, possibly in a nonlinear manner.

We start the derivation from the mechanical part. It is
assumed that ρbbb, ttt are independent of temperature, and also
α= const.

The equilibrium equation (5) holds:

LLLTσ+ρbbb = 000 in Ω (19)

and so do the natural boundary conditions

N σ= ttt on Γσ (20)

where matrix N contains components of normal vector nnn
properly arranged.

We can now consider linear elasticity with temperature-
dependent Hooke operator:

σ= EEE(ε−εΘ), εΘ = αΘΠΠΠ, EEE = EEE(Θ) (21)

or admit a general form of nonlinear elasticity

σ= σ(εe,Θ) , εe = ε−εΘ , Θ = T −T0 (22)

We will further call ε = εe + εΘ total strain and εe elastic
strain.

Next, we write the weak form of equilibrium equations
at time t +∆t (note that essential boundary conditions hold
uuu = ûuu,vvvu = 0 on Γu):∫

Ω

(LLLvvvu)
TσdΩ =

∫
Ω

vvvT
u ρbbbdΩ+

∫
Γσ

vvvT
u ttt dΓ ,

∀vvvu ∈Vu,h

(23)

The stress is additively decomposed:

σt+∆t = σt +∆σ (24)

and substituted into eq. (23) to obtain∫
Ω

(LLLvvvu)
T

∆σdΩ =W t+∆t
ext −W t

int (25)

where W t+∆t
ext is defined by the right-hand side of eq. (23) and

W t
int is as follows:

W t
int =

∫
Ω

(LLLvvvu)
Tσt dΩ (26)

The linearization is then performed at time t +∆t:

∆σi+1 = ∆σi + δσ, σ
t+∆t
i = σt +∆σi (27)
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where δσ denotes the corrective increment of stress, and upon
substitution into eq. (25) we obtain∫

Ω

(LLLvvvu)
T δσdΩ =W t+∆t

ext −W t+∆t
int,i (28)

The corrective increment can be derived the same way as dif-
ferential of a quantity is computed. The correction of stress is:

δσ= EEE
(
δε− δεΘ

)
+ δEEE

(
ε−εΘ

)
(29)

Further computation of δEEE and δεΘ

δEEE =
dEEE
dΘ
δΘ, δεΘ = αδΘΠΠΠ (30)

leads to the formula for δσ for linear elasticity:

δσ= EEE δε+ eeeδΘ (31)

in which vector eee

eee =
dEEE
dΘ

(ε−αΘΠΠΠ)−αEEEΠΠΠ (32)

is responsible for thermal expansion. The calculation can be
repeated for nonlinear elasticity as shown in the next three
lines:

δσ=
∂σ

∂εe dεe +
∂σ

∂Θ
δΘ = EEET δε

e +σΘ δΘ (33)

δεe = δε−αδΘΠΠΠ, EEET =
∂σ

∂εe

∣∣∣∣
Θ=const

,

σΘ =
∂σ

∂Θ

∣∣∣∣
εe=const

(34)

δσ= EEET δε+ eeeδΘ, eee = σΘ−αEEETΠΠΠ (35)

Eq. (31) has a similar form to eq. (35), so the latter one will be
used in further derivation.

The weak form of the equilibrium equation finally reads:∫
Ω

(LLLvvvu)
T EEET δεdΩ+

∫
Ω

(LLLvvvu)
T eeeδΘdΩ =W t+∆t

ext −

−W t+∆t
int,i

(36)

The non-stationary heat transport problem is reconsidered
next. For simplicity it is assumed that ρ, c, r, q̂n are indepen-
dent of temperature. We recall that the energy balance gives:

ρcΘ̇+∇
Tqqq = r, in Ω (37)

and the natural boundary condition is

qqqTnnn = q̂n, on Γq (38)

The Fourier law is assumed to be valid with temperature-
dependent conductivity

qqq =−ΛΛΛ∇Θ, ΛΛΛ = ΛΛΛ(Θ) (39)

but another constitutive equation could also be used here.

The weak form of eq. (37) at time t+∆t with the essential
boundary conditions Θ = Θ̂,vΘ = 0 on ΓΘ satisfied reads:∫

Ω

vΘρcΘ̇dΩ−
∫
Ω

(∇vΘ)
T qqqdΩ =

∫
Ω

vΘr dΩ−

−
∫
Γq

vΘq̂n dΓ ∀vΘ ∈VΘ,h

(40)

Adopting the generalized mid-point rule for time integra-
tion

Θ
t+∆t = Θ

t +(1− γ)∆tΘ̇t + γ∆tΘ̇t+∆t (41)

the following incremental decompositions are obtained for
γ = 1, i.e. for the backward Euler time integration:

Θ
t+∆t = Θ

t +∆tΘ̇t+∆t → Θ̇
t+∆t =

∆Θ

∆t
(42)

qqqt+∆t = qqqt +∆qqq, Θ̇
t+∆t = Θ̇

t +∆Θ̇ (43)

Eq. (40) can now be rewritten as∫
Ω

vΘρc
∆Θ

∆t
dΩ−

∫
Ω

(∇vΘ)
T

∆qqqdΩ = Qt+∆t
ext −

−
∫
Ω

(∇vΘ)
T qqqt dΩ

(44)

where Qt+∆t
ext denotes the right hand of eq. (40).

The linearization of the equations at time t +∆t means
the following increment update:

∆Θi+1 = ∆Θi + δΘ, ∆qqqi+1 = ∆qqqi + δqqq,

qqqt+∆t
i = qqqt +∆qqqi

(45)

in which the heat flux correction is calculated as

δqqq =−
dΛΛΛ

dΘ
∇ΘδΘ−ΛΛΛ∇(δΘ) (46)

For simplicity we assume now that the conductivity does
not depend on temperature:

dΛΛΛ

dΘ
= 0, δqqq =−ΛΛΛ∇(δΘ) (47)

If this assumption is not true, an additional term occurs in
the weak form. Upon substitution of eq. (47) into eq. (44),
the following integral equation is obtained:

1
∆t

∫
Ω

vΘρcdΘdΩ+
∫
Ω

(∇vΘ)
T

ΛΛΛ∇(δΘ)dΩ =

= Qt+∆t
ext −Qt+∆t

int,i

(48)

where

Qt+∆t
int,i =−

∫
Ω

(∇vΘ)
T qqqi dΩ+

1
∆t

∫
Ω

vΘρc∆Θi dΩ (49)

A generalization of the mathematical formulation of
multi-field problems can be found for instance in Kuhl (2005),
while the extension of the theory to multicomponent materials
(together with its thermodynamic background) is presented for
instance in Kubik (2004).
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FINITE ELEMENT IMPLEMENTATION OF NONLINEAR THERMO-ELASTICITY AS TYPICAL . . .

3.2. Algorithm and discretization – monolithic scheme

Although for one-direction coupling this is not mandatory, a
monolithic solution scheme is now proposed, in which two-
field finite elements are used and the problem is solved simul-
taneously for both fundamental unknowns, i.e. the temperature
and the displacement vector. The discretization of uuu and vvvu
using NNNu is performed, in particular uuu=NNNuǔuu, BBBu = LLLNNNu. More-
over, Θ and vΘ are discretized using NNNΘ, so that Θ = NNNΘΘ̌ΘΘ,
BBBΘ = ∇NNNΘ. The substitution of the interpolation formula into
the weak-form equations of equilibrium and energy balance
leads to the following matrix equation:[

KKKT KKKΘ

000 CCC+HHH

][
δǔuu

δΘ̌ΘΘ

]
=

 fff t+∆t
ext − fff t+∆t

int,i

hhht+∆t
ext −hhht+∆t

int,i

 (50)

where

KKKT =
∫
Ω

BBBu
TEEETBBBu dΩ, KKKΘ =

∫
Ω

BBBu
TeeeNNNΘ dΩ

CCC =
1
∆t

∫
Ω

NNNΘ
TρcNNNΘ dΩ, HHH =

∫
Ω

BBBΘ
T

ΛΛΛBBBΘ dΩ

fff t+∆t
int,i =

∫
Ω

BBBu
Tσt+∆t

i dΩ,

hhht+∆t
int,i =

∫
Ω

NNNΘ
Tρc

∆Θi

∆t
dΩ−

∫
Ω

BBBΘ
Tqqqt+∆t

i dΩ

and the left-hand side matrices are updated in each Newton-
Raphson iteration.

It can be mathematically shown that finite element so-
lution error for static analysis and non-stationary problem is
bounded and tends to zero when finer spatial and time discreti-
sations are applied. It is also mathematically proven that for
backward Euler time integration the process is unconditionally
stable (e.g. Quarteroni et al. (2000)).

4. DESCRIPTION OF COMPUTATIONAL TOOL

Building a new scientific simulation environment is a com-
plex task. However, building own simulation tools gives the
researchers an opportunity to shape them according to the new
ideas that appear in computational science such as for instance
meshless methods or XFEM.

In order to manage the complexity and the development
costs of a simulation system a common approach is to use
ready components, in particular Open Source Software. While
code sharing is nothing new, we observe a steady shift towards
component programming. This trend is fuelled by the appear-
ance of many comprehensive, high quality software packages
and improvement of standard interfaces between components.

The problem with selecting software components is such
that when it turns out that a particular choice causes problems
it is usually to late to modify it. The scope of the FEMDK
project is solving multi-field problems that appear during the
analysis of degradation phenomena of engineering materials

with special attention paid to concrete. The main task is to
build a problem-solving environment which would facilitate
fast creation of tools for solving coupled problems. The en-
vironment should satisfy various requirements regarding data
formats, geometric models, interpolation, solvers, etc.

The components of the constructed package FEMDK
are presented in Putanowicz (2011), including FEM library
GetFEM++, visualization libraries VTK and HOOPS 3D, mesh
handling library MOAB, GUI library Qt, scripting extension lan-
guage Python, configuration tool CMake, tools for handling
scientific data and automation of multi language programming,
solver libraries, tools for mesh generation and symbolic com-
puting.

The present and future useful features of FEMDK are:
arbitrary number of coupled fields, in other words arbitrary
number of degrees of freedom per node (which also allows for
XFEM extension); possibility of using different finite elements
available in GetFEM++ and different meshes for differently
discretized fields; possibility of selecting particular algorithms,
for instance for time or space integration, and for experiment-
ing with new numerical algorithms; different nonlinear aspects
of the model easily incorporated.

5. EXAMPLES

In this section examples are presented where selected thermo-
elastic benchmark problems are analysed.

5.1. Strain and stress due to heat flow along a bar

In the first example a simple one-dimensional (1D) bar prob-
lem with stationary heat flow is analyzed in order to compare
the results with an analytical solution. The 1D bar is 1 m long
and supported at its both ends. The bar is subjected to imposed
temperatures 250 ◦C and 0 ◦C at left and right ends, respec-
tively. The material properties representative for aluminium
alloy are selected and listed in table 1.

The Young modulus, thermal conductivity and coefficient
of thermal expansion are either assumed to be constant as in ta-
ble 1 or to depend on temperature in a piecewise linear manner
as in table 2. In the latter case the analysis becomes nonlinear.

Figures 2–4 show the comparison of solutions obtained
with constant material parameters, i.e. diagrams marked by
“params=const” and temperature-dependent ones, i.e. diagrams
marked by “params(T)”. In figure 2 the temperature distribu-
tions are shown. In the nonlinear case the temperature is only
slightly different from the standard one. Larger differences can
be seen in the diagrams of the longitudinal displacement in
figure 2, total and elastic strain in figure 3, and stress in figure 4
along the bar.

It can be seen in this simple example that the dependence
of model parameters on temperature can play the important role
in mechanical response. This is especially visible in figure 3
where for temperature-dependent Young modulus variable elas-
tic strain distribution is predicted.
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Table 1
Material properties

Name Symbol Value Unit

Young modulus E 6.8948 ·1010 Pa

Density ρ 2720 kg/m3

Poisson ratio ν 0.35

Linear expansion coefficient α 22.0 ·10−6 m/(m·deg)

Thermal conductivity k 205 W/(m·deg)

Table 2
Young modulus, thermal conductivity and linear expansion

coefficient versus temperature

Temperature ◦C 0.0 93.0 149.0 250.0

Young modulus ·1010 Pa 6.8948 6.6190 6.3432 5.9985

Temperature ◦C 0.0 125.0 250.0

Thermal conductivity W/(m·deg) 205 215 250

Temperature ◦C 0.0 100.0 200.0 250.0

Linear expansion
coefficient ·10−6 m/(m·deg)

22.0 25.4 26.5 27.15
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Fig. 2. Distribution of temperature a) and displacement b) along the bar
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5.2. Thermal expansion of square configuration

In this example a two-dimensional specimen with arbitrary
size 1 m × 1 m in plane strain conditions is considered. The
configuration is mechanically supported and thermally loaded.
The geometry and boundary conditions of mechanical and ther-
mal kind are shown in figure 5. The material properties are
assumed to be the same as in the previous example and are
specified in tables 1–2. The thermal analysis is of stationary
type.

Due to thermal expansion and mechanical constraints
elastic strains and stresses occur in the panel. The temperature
distribution along the horizontal axis is identical to the one
shown in figure 2 for the 1D example in the previous sub-
section. There is indeed no change of temperature in vertical
direction, see figure 6.

The displacement field for the nonlinear case is shown
in figure 6. Similarly to the previous example the differences
in results are significant for the strains, c.f. figure 7, although
hardly visible in two-dimensional contour plots in figure 8.

5.3. Thick-walled pipe

In the example the nonstationary heat transfer in thick walled
pipe in plain strain state is analized. The geometry and bound-
ary conditions of the benchmark test are shown in figure 9. The
natural boundary conditions for the mechanical subproblem
are assumed to be homogeneous pin = pout = 0, so that the
stresses in the cylinder are solely due to thermal expansion.
The inner wall temperature grows in the transient analysis
from T (t0) = 20 deg. to T = 200 deg. at t1=250 s and then it is
constant until t2 = 500 s. All material and load parameters are
given in table 3. The results after final time step and after the
first step at the beginning of the process are shown in figures 10
and 11.

Figure 10 shows several graphs illustrating temperature
distribution in the cylinder. Due to the circular symmetry of
the solution it is sufficient to illustrate temperature distribution
along any radial line segment. Figure 10 shows the graphs for
horizontal segment between R = 5 and R = 6 [m]. One can see
high temperature gradient at the internal wall and relatively
slow heat penetration with time. The final temperature distri-
bution has the exponential character corresponding well to the
analytical solution.

Closer scrutiny of numerical results reveals however oc-
currence of non-physical oscillations at the internal wall where
high temperature gradients are present. The temperature drops
below the initial temperature of 20◦ Celsius, which is physi-
cally not feasible since the pipe is heated. This effect can be
traced back to the usage of finite elements with linear shape
functions for temperature interpolation. With such functions
one cannot properly resolve inside a single elements restric-
tions on temperature degrees of freedom resulting from high
spatial gradient and coupling of degree-of-freedom (DOF) val-
ues in neighbouring nodes induced by the transient term. This
situation is illustrated in figure 11 where the temperature graph
in the vicinity of the internal boundary is shown.

Table 3
Material and load parameters for the thick-walled pipe example

Property Symbol Value Unit

Density ρ 2300 kg/m3

Poisson ratio ν 0.21

Young modulus E 32000 MPa

Coeff. of ther. expansion α 10−5 1/deg

Specific heat capacity c 0.75 kJ/(kg K)

Thermal conductivity k 1.7 W/(m K)

Reference temperature T0 0 ◦C

Inner wall pressure pin 0 Pa

Outer wall pressure pou 0 Pa

Inner radius Rin 5 m

Outer radius Rou 6 m

The application of a finer mesh does not solve the prob-
lem. With the finer mesh the spatial region with non-physical
solution is smaller but the effect (that is the temperature drop
below initial temperature) is more severe.

There are two possible remedies to regain the physical
soundness of the solution. One is to use higher degree shape
functions for the temperature field. The other solution is to keep
linear shape functions for the temperature field but instead of
using consistent thermal capacity matrix CCC (equivalent of the
mass matrix in dynamics problem) one should use the lumped
(i.e. diagonal) capacity matrix. The usage of the lumped matrix
decouples the DOF values at neighbouring nodes for a single
time step, which makes it possible to apply linear shape fun-
ctions and obtain proper results. Figures 12, 13 and 14 show
time variations of temperature, displacement and equivalent
(Huber-Mises) stress at the central point of pipe wall (R = 5.5).
The results obtained with linear and quadratic shape functions,
both for consistent and lumped heat capacity matrices are
compared. In figure 12 one can clearly see the inadmissible
solution for linear elements and consistent capacity matrix.
Figures 13 and 14 show the differences in displacement and
stress fields induced by the differences in the temperature field
for different shape functions or type of matrix CCC. The results
of this example show that even with such simple problem
one should be careful about algorithmic details and should
always do convergence study or by some other means assess
the quality of numerical results. Depending on the particular
problem at hand, non-physical or not fully convergent results
can seriously undermine conclusions drawn from numerical
simulations.
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Fig. 5. Boundary conditions for square configuration
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Fig. 6. Temperature distribution (a) and displacement field (b) in nonlinear analysis
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Fig. 7. Comparison of total strain distribution along horizontal symmetry axis
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a) b)

Fig. 8. Total strains εxx in linear (a) and nonlinear analysis (b)
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Fig. 9. Geometry and boundary conditions. Given temperature on inner boundary, insulation conditions on outer boundary
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6. CONCLUSIONS AND FUTURE WORK

In the paper the research on thermo-elasticity as typical cou-
pling of diffusion and momentum balance has been described.
The approach has a theoretical-numerical character, focused
on finite element approximation. The theory and algorithm in-
cluding nonlinear elasticity, linearization and time integration
has been derived. Some benchmark tests which can be used for

the verification of existing or developed software have been
described.

For the problems analysed in this paper model parameters
depend on current temperature distribution. This complicates
the analysis of the errors a priori. It is not the main aim of
the paper to perform complete error analysis of such kind
of problems.
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On the other hand the influence of truncation errors on
obtained results needs to be taken into account during analysis.

In the examples presented in this paper various densities
of spatial and time discretisations have been applied. It has
been noticed that the discretisation levels have a mere influence
on the obtained results. On the basis of that it can be concluded
that in the examples presented in this paper the proposed ap-
proximation procedures do not generate errors of the order that
would have a great impact on the results.

Solving coupled problems is nowadays a common theme
in numerical simulations. Thermo-mechanical coupling is one
of the simplest problems, as the physics behind it is well un-
derstood. From numerical simulations point of view this case
is important as its implementation can be used as a model and
reference point for more complex cases. The paper shows how
the base case can be extended by taking into account spatial
and temporal variation of problem parameters, as well as the
nonlinear character of the thermal problem when the material
properties depend on temperature.

With an appropriate FEM application the introduction of
parameters variability or nonlinear mode is just a matter of
couple of mouse clicks or a switch in data file. However, when
writing an implementation one has to plan ahead in order not
to patch the program code in an ad-hoc manner, which can lead
to unmanageable program code. The provisions for possible
extensions turn out to be the crucial point. In the similar spirit,
the full control of algorithm parameters such as finite element
interpolation, integration type and quadrature order, separate
meshes for different fields, is crucial for making complete
investigation of problem at hand. The tools that were used
for building the applications for the presented examples have
shown the required level of flexibility. The choice of GetFEM++
library as FEM engine, despite the high overhead due to com-
plexity of object and generic programming in C++, looks like
a good decision. The theory and examples presented in this
paper can serve as the base for mastering GetFEM++ library,
providing a reference point.

The theory can be extended to thermo-plasticity, see
e.g. Jaśkowiec et al. (2012); Ottosen and Ristinmaa (2005),
where full coupling between mechanics and heat transfer is
described due to plastic dissipation and a monolithic solution
scheme similar to the one presented in eq. (50) is mandatory.
This research can also be continued in many other directions.
For instance, one can derive the formulation of plane stress
and axisymmetric models (in the former case the constraint
σzz = 0 must be imposed which is not always trivial for cou-
pled theories). Concerning FEM, the analysis of proper bal-
ance of interpolations for the coupled fields seems important,
cf. Zienkiewicz et al. (2005). Finally, the incorporation of ad-

ditional coupled fields (the first candidate is fluid diffusion)
seems necessary in order to be able to simulate important
real-life problems, e.g. material behaviour in fire conditions or
corrosion processes.

Acknowledgement

The scientific research presented in this paper has been partly
carried out within the project "Innovative recourses and effec-
tive methods of safety improvement and durability of buildings
and transport infrastructure in the sustainable development"
financed by the European Union from the European Fund of
Regional Development based on the Operational Program of
the Innovative Economy. Moreover, the financial support of
the Polish Ministry of Science and Higher Education within
contract L5/104/2013/DS is gratefully acknowledged.

References

Buckley D. 2010, Solution of Nonlinear Transient Heat Transfer Problems.
M.Sc. thesis, Florida International University, Miami, Florida, FIU Elec-
tronic Theses and Dissertation. Paper 302.

Gawin D. 2010, Degradation processes in microstructure of cement compos-
ites at high temperature (in Polish). Engineering studies no 69, Polish
Academy of Sciences, Warsaw.
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