
MECHANICS AND CONTROL
Vol. 32 No. 4 2013 http://dx.doi.org/10.7494/mech.2013.32.4.143

ANNA PERDUTA?

ENHANCING MESH ADAPTATION CAPABILITIES
OF GetFEM++ “FEM ENGINE” WITH MAdLib LIBRARY

ABSTRACT

This paper describes enhancing mesh adaptation capabilities of GetFEM++ library. GetFEM++ is a versetile software package in
C++ for implementing FEM based solvers for partial differential equations. Although GetFEM++ offers a wide range of mathematic
tools for model descripion and discretization, it does only provide basic mesh refinement facilities. To enhance GetFEM++ capabilities,
a mesh adaptation package MAdLib is used. The paper discusses basic requirements for mesh adaptation packages and presents
MAdLib basic usage. The paper discusses implementation issues related to integration of both libraries. Examples illustrate
capabilities of mesh adapation package and FEM framework extended by mesh adaptation facilities.

Keywords: software, numerical analysis, finite element method, mesh adaptation packages

MOŻLIWOŚCI ROZSZERZANIA BIBLIOTEKI GetFEM++ O PAKIETY ADAPTACYJNE

Artykuł przedstawia możliwości rozszerzania biblioteki GetFEM++ o obliczenia adaptacyjne. GetFEM++ jest biblioteką zaimplen-
towaną w C++ umożliwiającą rozwiązywanie cząstkowych równań różniczkowych w oparciu o metodę elementów skończonych.
GetFEM++ oferuje szeroki zakres narzędzi matematycznych, które mogą być wykorzystane dla opisu modelu, jednak oferuje jedynie
podstawowe możliwości w zakresie adaptacji siatki. Biblioteka MAdLib umożliwiająca przeprowadzanie procesu adaptacji siatki
została wykorzystana w celu wzbogacenia możliwości biblioteki GetFEM++. W artykule zostały przedstawione podstawowe wyma-
gania stawiane pakietom adaptacyjnym oraz zaprezentowane wybrane możliwości biblioteki MAdLib. Omówione zostały problemy
związane z integracją obu narzędzi. Przykłady prezentują zastosowania pakietu MES rozszerzonego o obliczenia adaptacyjne.

Słowa kluczowe: oprogramowanie, metoda elementów skończonych, pakiety adaptacyjne

1. INTRODUCTION

Modern Finite Element Method (FEM) frameworks are re-
quired to be flexible enough to be applied to wide range of me-
chanical problems like plasticity, thermal conduction, fracture
mechanics, coupled problems. As the computational capabi-
lities of computing units get higher, the higher is the demand
for more accurate results obtained from discretization methods
used for solving partial differential equation systems. There-
fore it is important that FEM frameworks provide routines for
minimizing the errors arising due to the applied discretization
method. This problem may be addressed by providing mesh
adaptation procedures in FEM framework.

The paper presents the possibilities of extending Get-
FEM++ library with MAdLib – a mesh adaptation library.
GetFEM++ is used as a primary FEM engine in FEMDK soft-
ware – a FEM framework for analysis of coupled problems in
structural mechanics (Putanowicz 2011).

The purpose of this paper is to put attention to implemen-
tation issues related to FEM framework programming. One
of the aims is to share experience gained while implementing
mesh adaptation facilities in FEM framework. The paper de-
scribes issues related to programming and C++ language use.

1.1. What is GetFEM++

GetFEM++ (GetFEM++ 2010) is an Open Source object ori-
ented library, written in C++ with interfaces for Python and
Matlab languages. It is a generic FEM library providing compo-

nents for building FEM based simulations. The library supports
different types of structured and unstructured meshes, offers
a variety of interpolation methods and integration schemes.
GetFEM++ provides routines for evaluation of fields of any
rank, computation of fields’ derivatives and basic norms. The
library also delivers basic refinement procedures and basic
error estimator. GetFEM++ may be used with different linear
algebra solvers and is able to run in parallel environments.

1.2. What is MAdLib

MAdLib (MAdLib 2010) is an Open Source library imple-
mented in C++. The library is designed as generic component
for mesh adaptation tasks. Mesh adaptation delivered in the
library is based on local mesh modifications. The library pro-
vides support for handling geometric model and mesh refine-
ment for moving objects. MAdLib may be used as a standalone
library or may be coupled with miscellaneous packages e.g.
FEM library. Authors of MAdLib are also the authors of Gmsh
mesh generator (Gmsh 2010), thus MAdLib is compatible with
Gmsh data formats. MAdLib may be run in parallel mode, in
this case Metis library is required for the mesh partitioning.

1.3. Mesh adaptation overview

The application of discretization methods for solving partial
differential equations introduces approximation errors. It is de-
sired to minimize these errors, so the obtained solution is more
accurate. The mesh adaptation provides information about

? Institute for Computational Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; A.Perduta@L5.pk.edu.pl

143

A. PERDUTA

ENHANCING MESH ADAPTATION CAPABILITIES OF GETFEM++ “FEM ENGINE” WITH MADLIB LIBRARY

error and gives guidance for adjusting mesh to the specified
problem, including choice of the mesh generation algorithm,
element distribution in the domain, interpolation order. In fi-
nite element analysis mesh adaptation is one of the most time
consuming tasks in the whole process of problem analysis.
Therefore it is important to deliver efficient tools for mesh
refinement purposes.

The task of mesh adaptation may be divided to two se-
parate sub-problems: error estimation and mesh modification.
Error estimation gives information about error quantity and its
distribution in the domain. Starting from this one can deter-
mine where the mesh should be refined. Error estimation may
be divided into two types of procedures: a priori and a posteri-
ori. The a priori error estimation gives a general information
on the convergence of the solution, it is based on assumptions
made before the analysis process. The a posteriori error esti-
mation gives information about error measure, it is computed
on the basis of the approximate solution (Zienkiewicz et al.
2005, Ainsworth and Oden 2000).

Mesh modification provides procedures for modifying
mesh to obtain the one that satisfies the specified mesh size
requirements. The are two main classes of mesh modification:
topological and geometrical. The main objective of topological
modification is to adapt mesh element to specified require-
ments like mesh element size. In geometrical modification the
goal is to generate a mesh that conforms geometry of repre-
sented model. The crucial issue is to ensure that elements from
the resultant mesh will have quality good enough for analysis
purposes. Mesh modification may be handled in two ways: one
is to replace current mesh with the new one adapted to a speci-
fied size field; the other is to perform local mesh modification
on mesh cavities to adjust mesh to a specified size field. Mesh
cavities are regarded as regions obtained by removing some
elements, that should (the regions) be filled with new, finer or
coarser elements.

It is desirable that mesh adaptation package used for FEM
analysis would provide separation between error estimation
and mesh modification. Such separation of concerns gives
more flexibility in the choice of different error estimators and
provides a possibility of coupling different type of adaptation
packages.

The paper focuses on the mesh modification problem, as
it is the main feature delivered by MAdLib library and the
main subject of the paper. It does not discuss the choice of
appropriate error estimation technique, however due to the
MAdLib capabilities of working with various types of error
estimators, it is possible to investigate variety of estimators
that are commonly used in FEM.

2. GetFEM++ NATIVE MESH ADAPTATION
FACILITIES

As it was mentioned in the previous section, GetFEM++ li-
brary provides basic refinement procedures. Mesh refinement is
based on a method described in Bank et al. (1983). This method
of refinement may be applied to two dimensional meshes. In
GetFEM++ refinement of triangular meshes is implemented.

For the selection of mesh elements that should be refined

one may use basic error estimator delivered in GetFEM++. The
error estimator is based on the jump of the normal derivative at
element boundary. Because this type of element error indicator
is suitable only for elements of the first order, care must be
taken to approximate appropriate field with linear elements.
If it is required one may implement more sophisticated error
estimator based on basic estimator and norms delivered in Get-
FEM++.

It is worth to mention that GetFEM++ does not offer
any support of geometric model, but it does support basic
generation of structured meshes. If one wants to use more so-
phisticated model in analysis, the appropriate mesh must be
delivered and plugged into GetFEM++ data structures using
import functions. It is important to notice that in this case the
input mesh will be the best approximation of the underlying
geometrical model, so the generation of the mesh should be
taken carefully.

3. MESH ADAPTATION PACKAGE
AS AN INDEPENDENT COMPONENT

In this section general requirements for mesh adaptation pack-
age are presented.

3.1. Atomic mesh modification operations
One of the fundamental facilities of mesh adaptation library
are procedures, that allow for elementary mesh modification.
One can distinguish basic mesh modification operations: edge
split, edge collapse, edge swap. The basic operations may be
combined together to provide more specialized mesh trans-
formation operators. One may divide these operators into two
groups: the first is used to deliver prescribed mesh size field
and the second to ensure mesh qua-lity. Ensuring the mesh
quality is an important problem during the mesh refinement,
the goal is to produce meshes suitable for analysis. There are
lot of investigations on mesh quality assurance (Zavattieri et al.
1996) and there exist libraries especially designed for mesh op-
timization problems, for example Mesquite library (Mesquite
2009). Figures 1–4 illustrate the basic mesh modifications for
2D case.

Fig. 1. Edge split – the thickened edge in the left figure is
splitted into two parts

Fig. 2. Edge collapse – thickened edge in the left figure is
removed from the mesh

144

MECHANICS AND CONTROL Vol. 32 No. 4 2013

Fig. 3. Edge swap – remeshing of elements surrounding edge is
done to improve the quality of the worst element

1

2

3
1

2

3

4

a) b) c)

Fig. 4. Face collapse – the face with vertices (1), (2), (3) from
the left figure is removed. This is a compound operator –
first the edge split operator is used (b), than the newly

created edge is collapsed (c)

3.2. Mesh density description

Mesh adaptation is based on a description of mesh density.
This may be defined by specifying mesh size field, where the
size field is understood as an edge length. For the problem one
may construct a function δ (x, t) that defines an optimal size of
edge at any given point x and any given time t. Based on the
size field function, the non-dimensional length Le of an edge e
may be computed as follows:

Le =
∫

e
δ
−1(x, t)dl

This measure may be understood as the number of divi-
sions that must be performed to obtain prescribed edge length.
When the edge length Le is equal to one, the edge has an
optimal length. It is highly unlikely to obtain a mesh with
all Le quantities equal to one, thus some range of acceptable
lengths should be defined. One may define acceptable Le as
Le ∈ [Llow,Lup]. If the edge length exceeds defined range, the
element is regarded as incorrect one. The definition of accept-
able range of edge lengths is crucial to the mesh adaptation
procedures, there are some assumptions on the edge range
(Borouchaki et al. 1998), the authors of MAdLib library also
have investigated this problem and presented their results in
(Compère et al. 2008).

Various mathematical tools should be developed to de-
liver mesh size field description capabilities in mesh adaptation
package. One of the issues is to provide support for defining
isotropic and anisotropic sizes. In MAdLib both types of size
fields are supported.

3.3. Handling of geometric model

Usually in finite element method initial analysis of problem is
carried on coarse mesh and in the next steps the mesh is refined
to better match the underlying geometric model. Therefore, it
is important that adaptation package will provide support of
geometric model. Geometric models are described as Bound-
ary Representation (B-Rep) models (Hoffmann 1989), thus the

support specifically for this type of representation is required
in adaptation package.

3.4. Handling of fields on meshes

When dealing with finite element analysis, one interpolate
different types of fields on the mesh. It is desired that mesh
adaptation package will deliver structures that allow to store
the additional data prescribed to the mesh entities. It is essen-
tial to provide proper data update during the mesh refinement
procedure, ensuring that no data will be lost. One may use
simple interpolation techniques to recompute data field to be
defined on the new mesh, or may use specific type of mesh
families like hierarchical meshes.

3.5. Support for moving objects

A moving object may be understood as an object moving
in a fluid, a group of objects moving relative to each other or as
an moving discontinuity (e.g. crack tip). As there are currently
lot of problems devoted to CFD, support of adaptive mesh mo-
tion is required. The adaptation package that provides support
for moving objects, should contain algorithms allowing for
mesh refinement and node repositioning.

4. OVERVIEW OF MAdLib CAPABILITIES

As it was described in section 3, every mesh adaptation pack-
age must handle the prescription of mesh size. MAdLib pro-
vides special classes for size field description. In figure 5 a class
hierarchy delivered in MAdLib is presented.

SizeFieldBase

BackgroundSF LocalSF DiscreteSF

PWLSField

AnalyticalSField

Fig. 5. MAdLib’s size field class hierarchy

The choice of class type used for mesh adaptation is up
to the user of the library. In Discrete Size Field, the size is
prescribed at the vertices and linearly interpolated on edges.
Using Analytical Size Field it is possible to describe a mesh
size field given by a mathematical expression in the string form
and parsed by mathematical parser (MAdLib uses Mathex (SS-
CILIB) for this purpose) or as a C++ function defined by user.
If the user has a size field described in input mesh file, it is
possible to use Background Mesh to read the file and perform
adaptation. Local Size field allows for mesh refinement in area
defined around geometric objects.

From the DiscreteSF a PWLSField class is derived. The
PWLSField (piecewise linear size field) class delivers basic
functionality for discrete size field description to perform an
adaptation procedure. One needs to define a size (isotropic or
anisotropic) for every mesh edge. The other possibility is to

145

A. PERDUTA

ENHANCING MESH ADAPTATION CAPABILITIES OF GETFEM++ “FEM ENGINE” WITH MADLIB LIBRARY

use scaling functions available in the class. There is also the
possibility to prepare a function that will be used to build the
size field – a size needs to be computed and prescribed for
every vertex of the mesh. That kind of facility is especially
useful for building the size field based on error estimation.
Below a simple example of MAdLib usage is presented.

Listing 1: Basic sample of MAdLib’s usage
1 # i n c l u d e "MAdLib / MAdLib . h "
2

3 i n t main (i n t a rgc , c h a r ∗∗ a rgv) {
4

5 MAd : : pGModel gmodel = NULL;
6 MAd : : GM_create (&gmodel , " GeoModel ") ;
7 MAd : : GM_read (gmodel , " s o l i d . geo ") ;
8

9 MAd : : pMesh mesh = MAd : : M_new(gmodel) ;
10 MAd : : M_load (mesh , " s o l i d . msh ") ;
11

12 MAd : : PWLSField ∗ s i z e F i e l d = new MAd : : PWLSField (mesh)
;

13 s i z e F i e l d −> s e t C u r r e n t S i z e () ;
14 s i z e F i e l d −> s c a l e (0 . 5) ;
15

16 MAd : : MeshAdapter ∗ a d a p t e r =
17 new MAd : : MeshAdapter (mesh , s i z e F i e l d) ;
18 a d a p t e r −>run () ;
19

20 MAd : : M_writeMsh (mesh , " myMesh . msh " , 2) ;
21

22 r e t u r n 0 ;
23 }

First geometric model and mesh are read from files. Lines
12–18 contain the main part of adaptation procedure. At first
an object representing the size field must be defined on the
mesh. Here the piecewise linear size field is used. One needs to
define size at each vertex of the mesh, in the example current
size of mesh elements is take as the initial size field, which is
then the scaled by a scaling factor equal to 0.5. It means that
while refining each mesh edge is likely to be splitted into two
subedges.

After the user prepares a size field object, he may create
a MeshAdapter object, which is the main object responsible
for performing the mesh adaptation procedure. In the adapter
object one must input a mesh object and may define any num-
ber of size fields of various type. Here only one piecewise
linear size field is prescribed. Finally the mesh adaptation pro-
cedure may be run. During the procedure execution an output
containing information on performed mesh modifications is
displayed. When the adaptation procedure is done one may
write the resultant mesh to a MSH file.

In the presented listing 1 in order to refine the mesh
a scaling factor was applied. It is also possible to perform
mesh refinement based on the definition of edge length and
other quantities defining the mesh quality. To define the ac-
ceptable edge length one may use functions that are delivered
in MeshAdapter class. Several functions from the class are
presented in code 2.

Listing 2: A snippet from AdaptInterface.h – available functions
for setting parameter of mesh adaptation

vo id setEdgeLenSqBounds (d ou b l e lower ,
do ub l e uppe r) ;

vo id s e t C o l l a p s e O n B o u n d a r y (boo l a c c e p t = t r u e ,
do ub l e t o l e r a n c e =1 . e−6) ;

vo id setSwapOnBoundary (boo l a c c e p t = t r u e ,
do ub l e t o l e r a n c e =1 . e−6) ;

vo id se tNoSwapQua l i ty (d ou b l e noSwapQual i ty) ;
vo id se tSwapMinImproveRat io (d ou b l e r a t i o) ;
vo id s e t S l i v e r Q u a l i t y (d ou b l e s l i v e r Q u a l i t y) ;

In MeshAdapter class various statistic functions are de-
livered, so the user may observe the adaptation process and
the resultant quality of the mesh. One may print detailed in-
formation about sliver elements handled during the adaptation
procedure or write basic informations about mesh quality, e.g.
mean ratio, to a Gmsh POS file. The following snippet of code
presents the usage of output functions defined in MeshAdapter
class.

Listing 3: Saving additional output from adapter object
1 s t d : : o f s t r e a m f i l e ;
2 f i l e . open (" s t a t i s t i c s . t x t ") ;
3 a d a p t e r −> p r i n t S t a t i s t i c s (f i l e) ;
4 a d a p t e r −> p r i n t S l i v e r R e g i o n S t a t i s t i c s (f i l e) ;
5 f i l e . c l o s e () ;
6

7 a d a p t e r −>w r i t e P o s (" p o s t p r o . pos " , MAd : : OD_SIZEFIELD_MEAN
) ;

8 a d a p t e r −>wri teMsh (" o u t p u t . msh ") ;

It is possible to perform mesh adaptation on different
levels of generality. At the highest level one may choose the
run method to perform the adaptation, like in examples given
above. There is also the possibility of performing a general
operations that have influence on the whole mesh structure,
for example splitting the longest edges of mesh. At the lower
level one may execute a group of basic operators in a loop e.g.
edge swap loop. The lowest level contains primary operators
on elementary entities, that is: one can perform edge collapse
on a single edge of a mesh. That kind of separation gives the
user more control of the adaptation process.

The basic format on which MAdLib operates is Gmsh
MSH file containing a mesh description. MAdLib provides
procedures for handling geometric model, but an additional
library is required to provide this facility – MAdLib delivers
interface to Gmsh library for geometry support. By providing
support of the geometry, it is possible to adjust the mesh to
the geometric curvatures. MAdLib delivers procedures that
may be used to define density of the elements near the curved
boundaries.

If one does not have a geometric model, initial mesh may
be used instead. An important issue is that the initial mesh
will also give the best approximation of the geometry and no
geometric curvature adjustment may be performed.

5. IMPLEMENTING GetFEM++ INTERFACE
TO MAdLib

As it was shown in the previous section, MAdLib may
be used as a standalone library. In this section coupling of
MAdLib with GetFEM++ library will be discussed.

The main problem while coupling both libraries is the
difference in the data structure. It is crucial to ensure that
no topological and geometric information will be lost while
exchanging data between these libraries. Also assignment of

146

MECHANICS AND CONTROL Vol. 32 No. 4 2013

mesh elements to specified geometric entities should be pre-
served.

In GetFEM++ the mesh object may contain mesh regions
to which different data may be prescribed. Data connection
with the mesh is described in a special object designed for
modeling the FEM problem. On contrary, MAdLib requires
that all additional data will be prescribed to the mesh entities.
Accordingly MAdLib delivers special data structures for stor-
ing additional data. The following procedure was implemented
to enable mesh transfer between GetFEM++ and MAdLib
library:

Listing 4: Mesh import procedure outline
∗ r e a d t h e number o f v e r t i c e s i n GetFEM++ mesh

∗ i t e r a t e t h r o u g h a l l v e r t i c e s i n GetFEM++ mesh
and add e q u i v a l e n t e n t i t i e s t o MAdLib mesh

∗ i t e r a t e t h r o u g h r e g i o n s d e f i n e d i n GetFEM++ mesh
− add t o t h e MAdLib mesh e l e m e n t a s s i g n e d

t o t h e GetFEM++ r e g i o n and a t t a c h i n f o r m a t i o n
a b o u t g e o m e t r i c e n t i t y t o which e l e m e n t i s a s s i g n e d

∗ i t e r a t e t h r o u g h t h e r e m a i n i n g e l e m e n t s o f GetFEM++ mesh
− add e l e m e n t s t o MAdLib mesh

Similar procedure is implemented for importing mesh
from MAdLib to GetFEM++ structures.

The important step is to provide a function for mesh size
field evaluation. The goal of integration of both packages is
to combine GetFEM++ error estimator with MAdLib’s size
field prescription. A piecewise linear size field was built for the
analysis purposes. Because MAdLib provides iterator objects
that allow to iterate through all mesh entities, it is possible to
prescribe the size to every mesh vertex.

Having implemented import and mesh size field func-
tions, one may use both libraries to perform mesh adaptation
procedure. In this case it is not necessary to design a function
that imports solution from GetFEM++ to MAdLib because
direct access to the solution is not needed for MAdLib to
perform mesh adaptation. The size field is built on error esti-
mation which is derived from the solution, but is computed
in GetFEM++ and assigned to corresponding elements from
MAdLib’s mesh.

Nevertheless transfer of the additional data should be dis-
cussed for the completeness of this section. The main problem
with attaching data to the mesh does not lie in the implemen-
tation of transfer procedure from given solver to MAdLib’s
structure – the main issue is proper data update. It is expected
that when the refinement procedure is done, data attached to
the mesh will be kept up to date. In order to ensure correct
data update MAdLib delivers a callback function mechanism.
A callback function is a function that is called after every per-
formed operation, in the case of MAdLib that is after every
mesh modification. Such callback function may be used to
provide different schemes of interpolation of the data attached
to the mesh. It is the user responsibility to provide adequate
callback function to his code. More information on MAdLib’s
callback function mechanism are presented in (Compère et al.
2010). Figure 6 presents basic workflow of mesh adaptation

process for solving problems with GetFEM++ library extended
with MAdLib library.

Compute solution
with GetFEM++

Transfer mesh with addi-
tional data to MAdLib

Build size field based
on error estimation

Execute MAdLib’s
adaptation procedure

Transfer mesh
to GetFEM++

Fig. 6. Adaptation procedure used for solving FEM problems
with GetFEM++ and MAdLib libraries

6. ENHANCING SUPPORT FOR MOVING OBJECTS

Authors of MAdLib library have provided a support for mesh
refinement in moving domain. This is a difficult task to pro-
gram as it requires support of r-refinement, the type of refine-
ment where the nodes of the mesh are repositioned but no new
entities are added. This type of refinement may provide poor
quality of the resultant mesh.

In MAdLib node repositioning is based on elasticity ana-
logy. For more information reader may view (Compère et al.
2010). When the object is moved the mesh around an object
is also refined. For handling mesh motion MAdLib delivers a
class called MobileObject. Using this class one may specify
geometric entities that are part of geometric object subjected
to movement. To describe a motion one may define a displace-
ment vector or velocity.

MAdLib offers a special size field that may be used with
moving objects to refine a mesh in a specified radius. The size
field is LocalSF to which one define a group of geometric en-
tities that constitute a moving object. One may define isotropic
or anisotropic mesh size and define a radius describing the area
of mesh refinement.

As the problem is time dependent MAdLib offers time
support in MeshAdapter class. In listing 5 a basic example of
moving geometric objects is presented.

Listing 5: Sample of usage of MAdLib’s MobileObject class
1 # i n c l u d e "MAdLib / MAdLib . h "
2

3 # i n c l u d e < v e c t o r >
4

5 i n t main (i n t a rgc , c h a r∗ a rgv []) {
6

7 M A d L i b I n i t i a l i z e (& argc , &argv) ;
8

9 MAd : : pGModel gmodel = NULL;
10 MAd : : GM_create (&gmodel , " F i r s t M o d e l ") ;

147

A. PERDUTA

ENHANCING MESH ADAPTATION CAPABILITIES OF GETFEM++ “FEM ENGINE” WITH MADLIB LIBRARY

11 GM_read (gmodel , " s u r f . geo ") ;
12

13 MAd : : pMesh mesh = MAd : : M_new(gmodel) ;
14 M_load (mesh , " s u r f . msh ") ;
15

16 MAd : : m o b i l e O b j e c t ∗mob = new MAd : : m o b i l e O b j e c t (mesh) ;
17

18 mob−>a d d G E n t i t y (1 , 5) ;
19 mob−>a d d G E n t i t y (1 , 6) ;
20 mob−>a d d G E n t i t y (1 , 7) ;
21 mob−>a d d G E n t i t y (1 , 8) ;
22

23 s t d : : v e c t o r < s t d : : s t r i n g > k i n e m a t i c s ;
24 k i n e m a t i c s . push_back ("−1") ;
25 k i n e m a t i c s . push_back ("−2") ;
26 k i n e m a t i c s . push_back (" 0 . 0 ") ;
27 mob−>s e t D x K i n e m a t i c s (k i n e m a t i c s) ;
28

29 MAd : : L o c a l S i z e F i e l d ∗ l o c a l S F =
30 new MAd : : L o c a l S i z e F i e l d (mesh) ;
31 l o c a l S F−> s e t I s o S i z e (0 . 0 5 , " 0 . 0 1 ") ;
32 l o c a l S F−>a d d G e o m e t r i c E n t i t y (1 , 5) ;
33 l o c a l S F−>a d d G e o m e t r i c E n t i t y (1 , 6) ;
34 l o c a l S F−>a d d G e o m e t r i c E n t i t y (1 , 7) ;
35 l o c a l S F−>a d d G e o m e t r i c E n t i t y (1 , 8) ;
36

37 l o c a l S F−>u p d a t e T r e e () ;
38

39 mob−>a d d L o c a l S F i e l d (l o c a l S F) ;
40

41 MAd : : MeshAdapter ∗ a d a p t e r =
42 new MAd : : MeshAdapter (mesh) ;
43

44 a d a p t e r −> s t o r e I n i t i a l C o o r d i n a t e s () ;
45

46 MAd : : m o b i l e O b j e c t S e t ∗mobSet =
47 new MAd : : m o b i l e O b j e c t S e t () ;
48 mobSet−> i n s e r t (mob) ;
49 a d a p t e r −> r e g i s t e r O b j e c t s (mobSet) ;
50

51 MAd : : PWLSField ∗pwlSF = new MAd : : PWLSField (mesh) ;
52 pwlSF−> s e t C u r r e n t S i z e () ;
53 pwlSF−> s c a l e (0 . 5) ;
54

55 a d a p t e r −>a d d S i z e F i e l d (pwlSF) ;
56

57 do ub l e t = 0 . 0 ;
58 do ub l e d t = 1 . 0 ;
59 a d a p t e r −>se tT ime (t) ;
60 a d a p t e r −>moveObjec t sAndRepos i t i on (t , d t) ;
61 a d a p t e r −>run () ;
62

63 MAd : : M_writeMsh (mesh , " o u t p u t . msh " , 2) ;
64 d e l e t e a d a p t e r ;
65 MAd : : M_dele te (mesh) ;
66 MAd : : GM_delete (gmodel) ;
67

68 MAdLibFina l ize () ;
69

70 r e t u r n 0 ;
71 }

First one needs to define mobile object with geometric
entities (lines 16–21). One should define how the object will be
moved, in this case a displacement vector is prescribed (lines
23–27). The user may use x,y,z variables which represent the
initial coordinates, and t which represents the time. To every
mobile object a local size field must be prescribed. If user
defines a local size field (lines 29–37) he must specify at which
geometric entities the size field is defined (line 39). After the
mobile object definition, user must create adapter object, to
which mobile object must be plugged. First a MobileObject-
Set is defined and then one mobile object is added to the
set (lines 46–48). As one may see the user may define num-
ber of different mobile objects. Then the mobile set is added
to the adapter (line 49). To move an object moveObjects-
AndReposition function from MeshAdapterClass is called.

This function moves the boundaries and performs node reposi-
tioning. It is also possible to use partlyMoveObjects func-
tion that only moves the boundaries without node repositioning.
Because mesh motion introduces reshaping of mesh elements,
one may use smoothing functions to smooth the mesh. In
MAdLib, basic Laplace smoothing technique is implemented.

It is also worth to mention that MAdLib offers access
to direct data structures of mesh entities, so it is possible to
directly change the position of specific mesh entities. This may
be another way of handling a mesh motion and this feature was
used to generate presented examples described in section 7.4.
However these are lower API functions, and one should use
two aforementioned functions defined in MeshAdapter class.
The higher level functions are more general, they give control
of mesh motion process and provide mesh quality assurance,
while the lower level functions are designed to perform specific
task i.e. change node’s position.

7. EXAMPLES

7.1. Geometric model

As the first example MAdLib’s capabilities of handling the
geometric model are presented. The boundary of geometric
model is represented by a straight line and B-Spline curve. In
figure 7 geometric model and input mesh are presented. As
one may see initial mesh does not match well the underly-
ing geometric model. In figure 8 there are presented meshes
after the refinement procedure, a simple scaling factor was
introduced to obtain the resultant meshes. One may see that
the output meshes better match underlying geometric models.
Introducing a scaling factor and prescribing the mesh density
on the curvature one may obtain a refined mesh as presented
in figure 8.

It is worth to mention that the discussed example is ade-
quate when one is given an initial coarsed mesh and the adap-
tation procedure is used to refine the mesh. In finite element
analysis one first uses appropriate mesh generator to produce a
mesh that better matches the geometric model. The goal of this
example is to present that one may use MAdLib’s capabilities
of handling the geometric model in FEM analysis.

X

Y

Z
(a)

X

Y

Z
(b)

Fig. 7. Geometric model (a) and input mesh (b)

148

MECHANICS AND CONTROL Vol. 32 No. 4 2013

X

Y

Z
(a)

X

Y

Z
(b)

Fig. 8. Output meshes: (a) – after simple refinement, (b) – after
refinement with prescribed density at the curvature

7.2. Solution of Poisson’s equation

As an example of usage of GetFEM++ library extended with
MAdLib, the results obtained from adaptive solution of Pois-
son problem are presented.

∆u = f

The source function:

f (x) = 150e−100((x−0.5)2+(y−0.5)4)

is defined in the square domain ([0;1]× [0;1]); Homogenous
Dirichlet boundary conditions are imposed on the boundary.
Initial coarsed mesh is presented in figure 9.

Fig. 9. Initial mesh (a), refined mesh (b)

After adaptation procedure an output mesh is generated,
as it may be seen in figure 9. The solution and error distribution
are presented in figures 10 and 11. One may observe that the
higher the gradient of the solution is, the higher the density of
mesh is in the region.

Fig. 10. Solution of Poisson’s equation

Fig. 11. Error distribution obtained for refined mesh

7.3. Shear plate cantilever

A geometric model and initial mesh for the cantilever are pre-
sented in figure 12. The curved edge is represented by an arc
with radius r = 0.25 and angle α= π

2 . The problem description
is given below:

E = 2 ·108[kPa]

ν= 0.25

h = 0.01[m]

P = 400[kN] – net force

The right edge of the cantilever is uniformly loaded with net
force P.

Due to the GetFEM++ standard element error indica-
tor based on normal derivative, the equivalent stress field, on
which the indicator was computed, was approximated with
linear triangular elements.

X

Y

Z
Fig. 12. Geometric model and input mesh

One may observe that the initial mesh does not reflect the
curvature introduced in the geometric model. While perform-
ing the mesh adaptation procedure, it is expected that mesh will
be denser in the region of maximum stress concentration and
also that the output mesh will be more adjusted to the under-
lying geometric model, as one might seen in the example 7.1.
It should be emphasized that no special mesh size field was
applied in the curved region. The resultant meshes obtained
for four steps of the analysis are presented in figure 13. Results
obtained for initial and final mesh are presented in figure 14.

149

A. PERDUTA

ENHANCING MESH ADAPTATION CAPABILITIES OF GETFEM++ “FEM ENGINE” WITH MADLIB LIBRARY

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z
Fig. 13. Refined mesh after each ataptation step

X

Y

Z

X

Y

Z

Fig. 14. Results obtained for initial coarsed mesh and final mesh

7.4. Moving objects

As the last example a mesh adaptation for moving objects will
be presented. In the section 6 the general concept of handling
mesh motion was introduced. It was mentioned that MAdLib
is capable of supporting motion of mesh boundaries including
internal ones. Here a different case of moving object is consi-
dered. Instead of moving mesh boundaries (that is geometric),
we move an abstract point which indicates the center of mesh
refinement zone. A general image representing this situation is
presented in figure 15.

Two examples will be given, one in 2D and the other in
3D. For both examples the procedure for dealing with moving
points is analogous and is explained here. A NURBS curve
(modeled using openNURBS SDK (openNURBS 2012)) is
defined along which the point is moved. A mesh size field

is prescribed in the specified radius from the point. The ob-
tained results are presented in figures 16 and 17 appropriately.

R

Fig. 15. Geometric point moving along defined curve. In the
radius from the point a mesh size is defined

150

MECHANICS AND CONTROL Vol. 32 No. 4 2013

X

Y

Z

X

Y

Z
Fig. 16. Mesh refinement around a moving points in 2D

domain

Fig. 17. Mesh refinement around a moving point in 3D domain

8. CONCLUSIONS

An overview of extending finite element library with adaptation
package was presented. Basic code examples of MAdLib usage
were given, introducing the library fundamental capabilities.
Coupling GetFEM++ with MAdLib enhanced the capabilities
of handling geometric model in adaptation procedure and intro-
duced support for mesh motion. Presented examples showed
the basic capabilities of coupled libraries.

As it was previously mentioned it is possible to use vari-
ous types of error estimators, therefore investigation of other

types of error estimation used with GetFEM++ and MAdLib
would be an interesting problem to carry.

Increasing development of parallel platforms makes nec-
essary to implement computational frameworks using paral-
lelism to improve their computational speed. It is worth noting
that both libraries may be used in parallel environments (Get-
FEM++ 2010; Sheel and Remacle 2010), what is a strong
advantage of these packages. However only sequential cases
were investigated and presented in this paper.

Acknowledgements

Scientific research has been carried out as a part of the project
"Innovative recourses and effective methods of safety improve-
ment and durability of buildings and transport infrastructure in
the sustainable development" financed by the European Union
from the European Fund of Regional Development based on
the Operational Program of the Innovative Economy.

References

Ainsworth M., Oden J.T. 2000, A Posteriori Error Estimation in Finite Element
Analysis. Wiley-Blackwell.

Bank R., Sherman A., and Weiser A. 1983, Some Refinement Algorithms
And Data Structures For Regular Local Mesh Refinement. Scientific
Computing IMACS.

Borouchaki H., Hecht F., Frey P.J. 1998, Mesh Gradation Control. Interna-
tional Journal for Numerical Methods in Engineering.

Compère G., Remacle J.-F., Jansson J., Hoffman J. 2010, A mesh adapta-
tion framework for dealing with large deforming meshes, International
Journal for Numerical Methods in Engineering, 82(7):843–867.

Compère G. and Remacle J.-F., Marchandise E. 2008, Transient Mesh Adaptiv-
ity with Large Rigid-Body Displacements. Springer, IMR, pp. 213–230.

GetFEM++ Homepage 2010, http://download.gna.org/getfem/html/
homepage/index.html.

Gmsh: a three-dimensional finite element mesh generator with built-in pre-
and post-processing facilities 2010, http://geuz.org/gmsh/.

Hoffmann C.M. 1989, Geometric and Solid Modeling. Morgan Kaufmann
Pub, San Mateo, California.

MAdLib: an open source Mesh Adaptation Library 2010, http://sites.
uclouvain.be/madlib/.

SSCILIB (Small Scientific Library), http://sscilib.sourceforge.
net/.

Mesh Quality Improvement Toolkit 2009, http://trilinos.sandia.gov/
packages/mesquite/.

openNURBS SDK 2012, http://www.rhino3d.com/opennurbs.

Putanowicz R. 2011, Grounds for the selection of software components for
building FEM simulation systems for coupled problems, Mechanics and
Control, 30, pp. 234–244.

Sheel T.K., Remacle J.-F. 2010, Madlib – mesh adaptation library: An effi-
cient parallel mesh adaptation algorithm.. LAP LAMBERT Academic
Publishing.

Zavattieri P.D., Dari E.A., Buscaglia G.C. 1996, Optimization Strategies In
Unstructured Mesh Generation. Int. J. Numer. Meth. Engng..

Zienkiewicz O.C., Taylor R.L., Zhu J.Z. 2005, The Finite Element Method:
Its Basis and Fundamentals. ButterHeinem ST, 6th Revised Edition.

151

