
MECHANICS AND CONTROL Vol. 32 No. 2 2013

77

1. INTRODUCTION

A rotor dynamics and a rotor vibration are extensively stu-
died in present publications (Adams 2010, Dimarogonas et 
al. 2013, Gash et al. 2006, Muszyńska 2005, Kiciński 2002, 
Kowal 1996), especially in technical papers (Cheng et al. 
2006, Ding et al. 2002, Gosiewski, Górmiński 2006, Li et 
al. 2003, Li et al. 2007, Muszyńska, Bently 1989 and 1996, 
Tuma et al. 2007, Tuma et al. 2008). But there are signifi -
cantly fewer publications dealing with an active vibration 
control of the rigid rotor housed in journal bearings (Tuma 
et al. 2013, Vitecek et al. 2008, Vitecek et al. 2010). With in-
creasing rotational speed of the rigid rotor housed in journal 
bearings the hydrodynamic lubrication appears. It creates the 
oil wedge and for the overrun of the rotational speed which 
corresponds the Bently-Muszynska stability threshold it can 
cause lateral vibration of the journal in the bearing, and thus 
the rotor instability (Muszyńska 2005, Muszyńska, Bently 
1989 and 1996, Tuma et al. 2007, Tuma et al. 2008). The ro-
tor instability strongly limits the maximum usable rotational 
speed. The passive control is based on improvement of the 
bushing geometry which infl uences the fl ow of the lubricant 
while the active control uses an electronic feedback which 
actuates the bushing position with the use of piezoactuators 

according to the rotor position which is sensed by proximity 
probes. The controlled system has two inputs and two out-
puts because it is used a pair of the actuators and a pair of the 
position sensors. The article is devoted to the analysis of the 
active vibration control of the rigid rotor which is supported 
by journal hydrodynamic bearings.

2. STABILITY THRESHOLD

The simplifi ed stationary linear mathematical model of a ri-
gid rotor housed in a journal bearing (fi g. 1), i.e. the system 
‘rotor – bearing’, assuming that only its mass and behaviour 
of the oil fi lm are considered in the equation of motion, can 
have the vector form (Muszyńska 2005, Muszyńska, Bently 
1996, Tuma et al. 2007, Tuma et al. 2008):

M D K jD�� �r r r f+ + − =( )λΩ  (1a)

r = +x jy (1b)

where M is the total rotor mass [kg], D – the generalized 
damping coeffi cient [N s/m], K – the generalized stiffness 
coeffi cient [N/m], λ – the value of the oil circumferential ave-
rage velocity ratio [–], Ω – the rotor angular velocity [rad/s], 
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x – the horizontal displacement of the rotor centre [m], y – the 
vertical displacement of the rotor centre [m], f – the vector of 
the external forces, j – the imaginary unit.

The stability of the system ‘rotor – bearing’ can be verifi ed 
with the use of the characteristic polynomial of equation (1a):

N s Ms Ds K jD( ) ( )= + + −2 λΩ (2)

The characteristic polynomial (2) contains the complex 
coeffi cient; therefore the Mikhaylov stability criterion will 
be used (Park, Hahn 1993).

The Mikhaylov hodograph N(jω) is given by relation:

N j N s K M jDs j( ) ( ) ( )ω ω ω λω= = − + −=
2 Ω  (3)

where ω is the angular frequency [rad/s], s – the complex 
variable.

Because the Mikhaylov hodograph N(jω) is not an even 
function, therefore it has to be plotted for the angular frequen-
cies −∞ < < ∞ω . In accordance to the Mikhaylov criterion 
the system ‘rotor – bearing’ will be stable if the increment of 
the argument will be equal (fi g. 2) (Park, Hahn 1993):

Δ arg ( )
−∞< <∞

=
ω

ω πN j 2 (4)

From fi gure 2 it follows that the stability condition (4) will 
be fulfi lled if the point of intersection of the Mikhaylov hodo-
graph N(jω) with the imaginary axes for the angular frequency:

ω =
K
M

will be over the coordinate origin, i.e.:

K
M

K
M

− > ⇒ <λ
λ

Ω Ω0
1 (5)

The critical value of the angular rotor velocity:

Ωcr
K
M

=
1

λ
 (6)

expresses the Bently-Muszyńska (in)stability threshold (the 
oscillating stability boundary) (Muszyńska 2005, Muszyńska, 
Bently 1989 and 1996, Tuma et al. 2007, Tuma et al. 2008, 
Tuma et al. 2013, Vitecek et al. 2008, Vitecek et al. 2010).

3. ACTIVE INCREASING 
OF STABILITY THRESHOLD – LINEAR MODEL

Increasing the critical angular rotor velocity can be achieved 
by modifi cation of the journal bushing shape, respectively by 
their lubrication. An essential decreasing of the rotor vibra-

Fig. 1. Rotor journal in sliding bearing

Fig. 2. Mikhaylov hodograph of the system ‘rotor – bearing’
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tion, i.e. increasing the stability threshold, can be also achie-
ved by active actuating the position of the journal bushing.

One from possibilities is using the decentralized TITO 
(two-inputs two-outputs) control system in fi gure 3 with the 
control objective (Vitecek et al. 2008, Vitecek et al. 2010):

X s X s

Y s Y s
w

w

( ) ( )

( ) ( )

→ =
→ =

⎧
⎨
⎩

0

0
 (7)

The mathematical model of the system ‘rotor – bearing’ 
in the vector form (1) is not suitable for control synthesis. 
Therefore the vector model (1a) on the basis of (1b) can be 
rewrite in the component form:

M x t Dx t Kx t D y t f t

M y t Dy t Ky t D
x�� �

�� �
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

+ + + =
+ + −

λ
λ

Ω
Ωxx t f ty( ) ( )=

⎧
⎨
⎩
 (8)

where the external forces are given by relations:

f t u t mr t

f t u t Mg mr t
x x

y y

( ) ( ) cos

( ) ( ) sin

= − +

= − +

⎧
⎨
⎪

⎩⎪

Ω Ω

Ω Ω

2

2
 (9)

where ux is the actuator horizontal force [N], uy – the actu-
ator vertical force [N], g – the acceleration of gravity [m/s2], 
m – the unbalanced mass [kg], r – the radius for the unba-
lanced mass [m].

In accordance to fi gure 3 it is possible to write (for the 
reason of simplicity the independent complex variable s is 
not often explicitly written):
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 (10)

where Gx and Gy are the controller transfer functions, Vx and 
Vy – the transforms of the disturbances (unbalanced mass and 
gravitational force):

v t mr t

v t mr t Mg
x

y

( ) cos

( ) sin

=

= −

⎧
⎨
⎪

⎩⎪

Ω Ω

Ω Ω

2

2 (11)

The mathematical model of the system ‘rotor – bearing’ 
without the effect of the unbalanced mass and gravitational 
force is in fi gure 4. The V-structure of the model of the sys-
tem ‘rotor – bearing’ is shown in fi gure 4a, where:

G s G s
Ms Ds K

G s G s D

11 22 2

12 21

1
( ) ( )

( ) ( )

= =
+ +

= =

⎧
⎨
⎪

⎩⎪ λΩ
 (12)

The P-structure of the mathematical model in fi gure 4b 
is suitable for verifi cation of the stability of the system ‘ro-
tor – bearing’ and the synthesis of the TITO control system, 
where:

G s G s
Ms Ds K

Ms Ds K D

G s G s

P P

P P

11 22
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 (13)

It is obvious that the characteristic polynomial of the sys-
tem ‘rotor – bearing’ has the form:

N s Ms Ds K D

M s DMs KM D s

DKs D

P ( ) ( )

( )

= + + + =

= + + +

+ +

2 2 2 2 2

2 4 3 2 2

2 2

2 2

2

λ

λ

Ω

Ω22 2+ K
 (14)

from which it can be obtained the stability condition in the 
form:

Ω <
1

λ
K
M

 (15)

considering the Hurwitz criterion. It is obvious that it must 
be identical like (5).

Fig. 3. Linear TITO control system for stabilization of system ‘rotor – bearing’
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By the rewriting of the (10) it is possible to obtain:
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The characteristic polynomial N(s) of the TITO control 

system in fi gure 3 can be obtained after modifi cation of the 
relations (16) from any their denominators.

Assuming that the both controllers are of the same PD 
type (the use of controllers with the integrating component 
is for analytical computation more diffi cult), i.e. the transfer 
functions of the controllers are as follows:

G s G s k T sx y P D( ) ( ) ( )= = +1  (17)

then the characteristic polynomial has the form:
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where kP is the controller gain, TD – the controller derivative 
time constant.

Using the Hurwitz criterion the stability condition can be 
calculated in the form:

Ω <
+

+
+ +1 2

2λ
K k

M
K k D k T k T

MD
P P P D P D( )( ) (19)

From the condition (19) it is obvious that by the use of 
the decentralized TITO control system with the PD control-
lers increases the stability threshold of the rotational speed 
which is originally defi ned by the formula (6). For kP = 0 the 
condition (5) or (15) is obtained. Because the controllers (17) 
don’t contain the integrating component the displacement of 
the rotor centre relative to the centre of the journal bearing 
resulting from presence of the gravity force wouldn’t be re-
moved, but for suffi ciently high values of the controller gains 
kP it will be essentially suppressed. The harmonic infl uences 
caused by the unbalanced mass cannot be fully removed even 
by the use of the controllers with the integrating component.

All theoretical conclusion for the linear mathematical 
model of the system ‘rotor – bearing’ and the TITO con-
trol system with decentralized controllers P, PD, PI and PID 
were confi rmed by the digital simulation (Vitecek et al. 2008, 
Vitecek et al. 2010).

4. ACTIVE INCREASING 
OF STABILITY THRESHOLD – 
NONLINEAR MODEL

Further it is supposed that the nonlinear mathematical 
model of the system ‘rotor – bearing’ has the same form like 
(1) or (8), but the generalized coeffi cients D, K and λ  are 
nonlinear functions of the relative radial eccentricity: 

e
c

x y= +
1 2 2 (20)

where c is the radial clearance [m].
The following formulas are very often used (Cheng et al. 

2006, Ding et al. 2002, Li et al. 2003, Li et al. 2007) for ap-
proximation of stiffness K, damping D and circumferential 
average velocity ratio λ  as functions of the relative radial 
eccentricity:

Fig. 4. Block diagram of system ‘rotor – bearing’: a) V-structure, b) P-structure

M. Vංඍൾർඈඏൺ, A. Vංඍൾർൾ, J. Tඎආൺ
ACTIVE ROTOR VIBRATION CONTROL



MECHANICS AND CONTROL Vol. 32 No. 2 2013

81

K K e n= − −
0

21( ) , D D e n= − −
0

21( ) , n = ÷0 5 3. (21)

λ λ= −0 1/ ( )e b ,   0 1< <b (22)

where K0 is the initial value of the generalized stiffness coef-
fi cient [N/m], D0 – the initial value of generalized damping 
coeffi cient [N s/m], λ0  – the initial value of the oil circum-
ferential average velocity ratio [–].

The nonlinear dependence of the parameters D, K and λ  
(21) and (22) on the relative radial eccentricity (20) has the 
positive infl uence on the rotor stability.

Also in this case the verifi cation of these theoretical conclu-
sions was provided by digital simulation (Vitecek et al. 2008) 
and on a laboratory test rig (Tuma et al. 2013, Vitecek et al. 
2010). The results obtained for decentralized proportional con-
trollers on the real test rig (fi g. 5) show that the rotor vibration 
can be considerably decreased by the active vibration control.

5. CONCLUSIONS

The paper describes a new approach to increase the stability 
threshold of the rigid rotor housed in journal bearings by me-
ans of force acting by way of a special bushing on the journal 
in the bearing. The electronic feedback and the piezoactua-
tors in the control system increase the instability threshold 
and simultaneously decrease the rotor vibration.

It was proved analytically and by the digital simulation 
and also experimentally on the real laboratory rig that the 
active rotor vibration control can considerably increase the 
operational rotational speed and therefore there are good as-
sumptions for its practical applications.

The work was supported by research project GACR No. 
101/12/2520.
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Fig. 5. Onset of rotor instability (vibration) on the test rig: a) without control, b) with control


