
39

Managerial Economics 
2013, No. 14, pp. 39–60 

http://dx.doi.org/10.7494/manage.2013.14.39

Henryk Gurgul*,1Robert Syrek**2

The structure of contemporaneous 

price-volume relationships  

in financial markets

1. Introduction

The learning of price-volume dependencies is important, because it enables

to get an insight into the structure of financial markets, and into the information 

arrival process. In addition, one can learn how information is disseminated among 

market participants.

There are two competitive hypotheses: the Mixture of Distribution Hypothesis 

(MDH hereafter) [1, 5, 8, 26] and the Sequential Information Arrival Hypothesis 

[6, 13]. While MDH implies contemporaneous price-volume relationships the 

Sequential Information Arrival Hypothesis assumes dynamic, causal dependence 

price-trading volume.

Under the Mixture of Distributions Hypothesis the time series of the volatil-

ity of stock returns and trading volume are positively correlated, but the time 

series of stock returns and trading volume do not show correlation. Most con-

tributions involving price-volume dependencies were based upon the Pearson 

linear correlation coefficient, which does not allow the testing of extreme value 

dependencies. Fleming and Kirby [9] found a strong correlation between inno-

vations and trading volume and volatility in the case of 20 firms on the Major 

Market Index (MMI). The results suggest that trading volume can be used to 

obtain more precise estimates of daily volatility for cases in which high-frequency 

returns are unavailable. Balduzzi et al. [1] using linear regression (with trading 
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volume as a dependent variable) arrived at a low correlation between extremely 

low (below –4.09%) stock returns and trading volume for the American Index. 

Marsh and Wagner [15] tested tail relationships (the indexes under study were 

the AEX, CAC, DAX, HSI, FTSE, S&P500 and TPX) using extreme value theory. The 

authors found a lower degree of dependence in the left tail than in the right tail 

in the pair stock returns-trading volume.

In one of more recent studies Gurgul et al. [12] modeled the dependence 

structure of log-volume and volatility (calculated as absolute values of stock re-

turns) for eight stocks from the DAX. The results indicate a significant dependence 

between high values of variables and a lack of dependence for low values.

Rossi and de Magistris [24] using mixtures of copulas and survival copulas 

(Gumbel and Clayton) found that volatility and volume are more dependent for 

high values than for low. The volatility was computed using high-frequency data 

and realized volatility estimators. Ning and Wirjanto [18] using Archimedean copu-

las tested the degree of dependence of stock returns and trading volume for some 

Asian indexes. The presented results indicate that there is no dependence between 

low stock returns and high (low) trading volume.

A special kind of dependence is known as long-memory. (Robinson and Yajima 

[3] , Phillips and Shimotsu [20, 21, 22], Shimotsu [25]). If a time series possesses 

long memory, there is a persistent temporal dependence between observations even 

considerably separated in time. The long memory property of volatility has been 

widely documented in empirical research. This topic was discussed in Bollerslev 

and Mikkelsen [4] and Ding and al. [7], among others. On the other hand, Lobato 

and Velasco [14], Bollerslev and Jubinski [3], Fleming and Kirby [9], Rossi and de 

Magistris [19] found that trading volume also exhibits long-run dependence (long 

memory). The interesting question is the link between long memory in volatility 

and in trading volume. 

The central question of our paper is the examination of dependence stuctures 

of stock returns, volatility and trading volumes of companies included in CAC40 

and FTSE100. Moreover, we aim to test the MDH hypothesis in version with long 

memory. We will check the equality of the long memory parameters of volatility and 

trading volume and fractional cointegration of these time series. 

In particular we will examine the existence of essential dependence between 

high volatility and high trading volume. The important goal of this study is the 

choice of proper copulas necessary to capture contemporaneous dependence 

structures of returns and trading volume. In addition, we will also compare the 

dependence structure of times series under study based on companies included in 

CAC40 and FTSE100.

The structure of the paper is as follows. The methodology and main notions 

applied are outlined in the following section. Third section is concerned with 

a description of the dataset. Empirical results and their discussion are provided in 
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fourth section. Finally, in the last section we summarize major conclusions and 

suggest directions for future research.

2. Methodology

2.1. Long memory 

The autocorrelation function (ACF) of time series with long memory tails 

off hyperbolically. The short-memory property is easy to detect by the low 

order correlation structure of a series. This type of time series is character-

ized by exponentially declining autocorrelations and, in the spectral domain, 

demonstrates high-frequency distribution. The standard ARMA-processes do 

not show long memory. They can only exhibit short run (high-frequency) 

properties.

The presence of long memory in financial data is a source of both theo-

retical and empirical problems. The long memory property arises from nonlin-

earities in economic data. The well-known martingale models of stock prices 

cannot follow from arbitrage, because new information cannot be entirely arbi-

traged away. A second problem caused by long memory is pricing derivative se-

curities with the martingale method. This method is usually false if the accom-

panying stochastic (continuous) processes exhibit long memory. The process X
t
 

has a degree of fractional integration d (we write I(d)), when:

(1 – L)dX
t
 = u

t 
,  (1)

where L is a lag operator (LX
t
 = X

t – 1
) and ut is a process with a short memory. The 

expression 1( – L)d is presented in the form of the infinite series:

0

( )
1

( ) ( 1)
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k

k d
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where (x) is the Gamma function. The process ARMA ( ) is defined as:

( ) ( ) ,t tL u L (2)
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z z  and 
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L z  are lag polynomials of degree 

and q, respecively. The process is stationary and invertible if the roots of (z) and 

(L) lie outside the unit circle. If u
t
 is described by (2.2), and t is white noise

then the process is the Autoregressive Fractionally Integrated Moving Average 

process ARFIMA( , d, q). 
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If the parameter 0  d  0,5 then the process is stationary and invertible 

and the autocorrelation function exhibits hyperbolic decay, because for the lag 

k it is proportional to 2 1(1 )

( )

dd
k

d
when k  If d  (0; 0,5), we say that

the process has a long memory and if d  (–0,5; 0) the process is antipersistent
and has intermediate memory. For d  [0,5; 1] the variance of Xt is infinite, so

the process is covariance nonstationary but mean-reverting.

There are many different estimators of long memory parameter d 

(Phillips and Shimotsu [21]). We use the exact local Whittle estimator (Phillips 

and Shimotsu [20, 22], Shimotsu [25]). Following (2.1) we get:

1
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Discrete Fourier transformations and periodogram of 
t
 are defined as: 
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Supposing that process Xt is covariance stationary and spectral density func-

tion f( ) fulfills the condition f( )~G –2d, if  
+
, Phillips and Shimotsu [20]

minimize the function:
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The ELW estimator of long memory parameter d is then:
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2.2. Fractional cointegration

Stationarity is a crucial precondition for standard linear Granger causality 

tests. Nonstationarity of the time series under study may lead to false conclusions 

by a traditional linear causality test. This phenomenon has been investigated in 

previous empirical (Granger and Newbold [11]) and theoretical (Phillips [19]) 

deliberations which led to a cointegration analysis. 

A cointegration analysis (based on the estimation of a VEC model) may be per-

formed for variables which are integrated in the same order. As shown by Granger 

the existence of cointegration implies long run Granger causality in at least one 

direction (Granger [11]). To establish the direction of this causal link one should 

estimate a suitable VEC model and check (using a t–test) the statistical significance 

of the error correction terms. Testing the joint significance (using an F–test) of 

lagged differences provides a basis for short run causality investigations.

The classical definition of cointegration can be generalized as for any d and 

de two  I(d) processes are fractionally cointegrated, if there exists a linear combi-

nation of these processes that is I(de) with de 
 d. In this case there exists long-

run dependence and a common stochastic trend. Assume that z
t
 = (x

t
, y

t
)
 
with 

x
t  

I(d ) and y
t  

I(d ). If there exists  -

tion y
t
 –  x

t 
I(de), where 0  de  d, then xt 

and y
t
 are fractionally cointegrated. 

We write z
t 

CI(d, b), for b = d – de
. Robinson i Yajima [23] consider the case 

of stationary variables, whereas Nielsen and Shimotsu [17] analyse the case of 

covariance nonstationary variables too. The model under consideration is given 

by (Shimotsu [25]):

1

2

1
de

t t t
d

t t

L y x u

L x u
 (3)

where ut = (u1t 
u
2t
)' = C(L)

t 
 is a bidimensional stationary vector with spectral 

density f
u
( ). In matrix notations (2.3) has the form:

1 0 1

0 10 1

ed

t

t t td
t

L y
Bz u B z

xL
 

The rank of the matrix C(1) determines whether the processes y
t
 and x

t
 are 

cointegrated. Denoting as r the number of cointegration vectors, the rank of C(1)

is equal to 2 – r  2. If the variables are cointegrated, then C(1) does not have 

full rank. 

The fractional cointegration can be tested as follows. Firstly using Whittle es-

timators long memory parameters are estimated, and then a test of their equality 
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is performed. Let d
*
 be the common value of the long memory parameters of 

series x
t
 and y

t 
(with parameters d

1
 and d

2
 , respectively). When testing:

0 * ,iH d d i

test statistics of Robinson and Yajima [23] has the form:

1 1 2

0
ˆˆ ˆ ˆˆ ˆ1

( )' ' ( )
4

T m Sd S D G G D S h n

1

( ),ˆSd

where S = (1 –1)', h(n) is the function which is convergent to 0, D = diag (G
11
, G

22
), 

whereas Ĝ  is expressed as:

*L; [ , ]
1

1
[ ( )],ˆˆ

m

jd x y
j

G d Re I
m

where 
*L; [ , ]d x y

I  is the periodogram of 
1 21 , 1 '
d d

t tL x L y . If the vari-

ables under study are not cointegrated (cointegration rank r = 0 then dT 2

0 1
ˆ . 

Otherwise T0 0ˆ , which means that r = 1. If 0 *iH d d i  cannot be re-

jected then one can estimate the cointegration rank using the eigenvalues of ma-

trix Ĝ . If i
ˆ  is i – th eigenvalue, then the rank of cointegration is equal to 

u

r L u
0,1

argmin ( ),ˆ

where 
u

i

i

L u v n u
2

1

2 ,ˆ

and v(n) is a function with n
m v n1

1
0 , for n . The value Ĝ (d 4

) is 

estimated as:

m

jd x y
j

G d Re I
m

1

** L; [ , ]
11

1
[ ( )ˆ ],

where 
*L; [ , ]d x y

I  is the periodogram of 
d d

t tL x L y* *   whereas m
1
 is 

the function of n. The value of d
* 
is unknown, so it is computed as the mean of the 

estimated long memory parameter values of x
t
 and y

t
. Finally G d*

ˆ  is computed. 

2.3. Dependence between volatility and trading volume

In this subsection the methods of the dependence structure analysis of vola-

tility and trading volume is described. Using copulas we can model the degree of 

dependence in the tails. i.e. for extreme values.
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Having estimated long memory parameters to filter the time series we can 

use FIVAR models (Rossi and de Magistris [24]). We should transform the series 

using formulas:

Rt
d

t tL R R
2 2 2 ,(1 )

Vt
d

t tL V Vln(1 ) ln ln .

As a result we obtain stationary time series I(0). Then, we apply a VAR (k) 

model to capture linear dependencies. This model for vector P
t
 = (X

t
 Y

t
)' can be 

described as :
k

i

0

1

,
t i t i t

P P

where 
0
 is the vector of intercepts. 

i11. 12

i

i

i i

.

21. 22.

 is the matrix of parameters 

(for i = 1... k) and 
t
 is the vector of error terms. Optimal lags k are chosen us-

ing information criteria and likelihood ratio tests. For vector 
t tR V2

t
P ' in

most cases k <= 3. We estimate the variance-covariance matrix of parameters 

with heteroscedasticity correction. In most cases this correction is enough to get 

homoscedastic errors. If not, ARCH-type models are used. We standardize the 

residuals and fit different distribution functions: NIG (abbreviated from normal 

inverse Gaussian), hyperbolic, t location-scale. 

Probability density functions are given by: 

 NIG:

NIG

K x

f x x
x

22

1

22

; ; ; ; exp .

where x 2 2
R  and K1  is a modified 

Bessel function of the third kind with an index one of the form:

1

1

0

1 1
;

2 2

 hyperbolic:

HYPf x x x
K

22

1

; ; ; ; exp ;
2
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Skal tf x; ; ;

x
1 /22

1

2

2

.

All of the distribution functions presented above are special cases of general-

ized hyperbolic distributions. 

2.4. Copulas

Copulas reflect the dependence structures among financial variables. We use 

in empirical part Gaussian copula, Archimedean (Clayton and Gumbel) copulas, 

survival copulas and their convex combination (Nelsen, 1999). 

The Gaussian copula (or normal copula) is given by:

Ga 1 1

1 2 1 2,

u u s s s s
1 1

1 2
2 2( ) ( )
1 1 2 2

1 22 1/2 2

21
,

2 (1 ) 2(1 )

where  is bivariate normal distribution with correlation coefficient  1 and 

denotes standard univariate normal distribution function. 

The Clayton copula is given by:
1

1 2 1 2,C u u u u

with 1. \ {0} . If parameter  is positive then
1

1 2 1 2, ; ( 1) .C u u u u

The Gumbel copula is given by:
1

1 2 1 2, ; exp( ).C u u lnu lnu .

for 1. .

The Gumbel and survival Clayton copulas describe asymptotic depen-

dence in the right tail, and Clayton and survival Gumbel in the left tail. To 

model the dependence in both tails simultaneously one can use mixtures of 

copulas.
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We consider the following copulas:
1. ;

Gum sGum
C C

2. (1 ) ;
Gum Cl
C C

3. 
sCl sGum
C C

4. ;
sCl Cl
C C

5. ;
Gum Gauss
C C

6. (
sCl
C ;

Gauss
C

and one-parameter copulas: 

7. 
sCl
C

8. 
Gum
C

The copulas that fit the best are chosen using information criterion. The 

correctness of the copula specification are validated by an Anderson-Darling test 

applied to the first derivative of copulas: |
dC

C u v
du

and |
dC

C v u
dv

.

The classical Archimedean copulas (and survival copulas) defined above 

(volatility-trading volume pair) can be applied only to modeling dependence 

in the top-right corner (high returns-high volume). To model relationships 

-
C it holds  

true that:

90

1 2 2 1 21 , ,,C u u u C u u

180

1 2 1 2 1 2, 1 1 ,1 ,C u u u u C u u

270

1 2 1 1 2, ,1 ,C u u u C u u

The copula C(180) is of course the survival copula for C. The domain of copula 

parameters (C(90) and C(270)) are symmetrical in respect to zero so the parameters 

are negative. As formerly, mixtures of copulas can be used to model dependence 
in both top corners simultaneously.

 90
1 ;

Gum Gum
C C

 270
1 ;

Gum Cl
C C

 180 270
1 ;

Cl Cl
C C

 180 90(1 .)
Cl Gum
C C

Using the reviewed methods we will check in different aspects links be-

tween returns and trading volume. In the next section we will show the 

dataset.
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3. Data description

We consider the prices and trading volumes of stocks from the French (CAC40)

and the English (FTSE100) indexes from 1 October 2002 to 1 October 2012. The da-

taset comes from Thomson Reuters data services and covers a period of 2610 trad-from Thomson Reuters data services and covers a period of 2610 trad-covers a period of 2610 trad-

ing days. Throughout the paper stock returns were approximated by log-returns.

3.1. Descriptive statistics

Using daily prices at close we computed logarithmic stock returns and multi-

plied them by 100. The series of trading volumes are mostly leptokurtic and posi-

tively skeweed so we apply a logarithmic transformation. As a result, the returned 

series are close to normal. The Tables 1 and 2 present the descriptive statistics of 

the log-returns, volatilities (square of log- returns) and log-volumes.

Table 1 

 Descriptive statistics of companies listed on CAC40

log-returns

statistics mean standard dev. skewness kurtosis

minimum –0.050 1.434 –2.039 5.418

1st quartile –0.014 1.862 –0.122 7.285

median 0.012 2.183 0.084 8.750

3rd quartile 0.032 2.574 0.267 10.527

maximum 0.074 3.730 0.970 53.052

log–volume

statistics mean standard dev. skewness kurtosis

minimum 5.150 0.438 –1.003 2.737

1st quartile 6.746 0.486 –0.317 4.077

median 7.361 0.531 –0.188 4.391

3rd quartile 8.111 0.618 0.058 4.830

maximum 9.763 1.155 0.356 7.642

volatility

statistics mean standard dev. skewness kurtosis

minimum 2.057 5.438 5.760 51.531

1st quartile 3.467 9.342 7.292 78.266

median 4.763 12.646 9.168 127.220

3rd quartile 6.624 19.192 12.896 270.836

maximum 13.910 100.382 42.043 1991.226

Source: own elaboration based on Reuters data basis
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Table 2 

 Descriptive statistics of companies listed on FTSE100

log-returns

statistics mean standard dev. skewness kurtosis

minimum –0.126 0.990 –10.355 3.620

1st quartile 0.012 1.699 –0.282 7.524

median 0.032 1.963 –0.077 9.248

3rd quartile 0.057 2.516 0.081 13.482

maximum 0.113 4.179 1.409 316.662

log-volume

statistics mean standard dev. skewness kurtosis

minimum 5.100 0.489 –1.877 2.868

1st quartile 7.434 0.604 –0.353 3.643

median 8.162 0.667 –0.192 4.121

3rd quartile 9.144 0.745 –0.048 4.830

maximum 12.124 1.690 0.612 10.228

volatility

statistics mean standard dev. skewness kurtosis

minimum 0.981 4.139 3.185 15.753

1st quartile 2.885 8.240 8.002 97.386

median 3.857 11.588 10.329 156.916

3rd quartile 6.330 19.931 15.339 358.252

maximum 17.456 243.561 50.070 2539.289

Source: own elaboration based on Reuters data basis

For all stocks under consideration we observe significant skewness and ex-

cess kurtosis in stock returns. The null hypothesis about normality by the Jarque-

Bera test is rejected in all cases. Some of the log-volume series have a kurtosis 

close to 3, but the non-zero skewness causes a departure from normality in the 

series. The null hypothesis about lack of autocorrelation by the Ljung-Box test 

is also rejected. Using regression we may remove, if necessary, any determinis-

tic trend from the series of log-volumes to achieve trend-stationary time series. 

Additionally, we use dummy variables in order to describe calendar effects i.e. the 

effect of the month in the year and the day in the week in the log-volume series. 

The time series of volatility are far from normal because of high values of the 

kurtosis and skewness (positive in all cases).
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4. Empirical results

4.1. Results of long memory  
and fractional cointegration estimation

Based upon the methodology presented above we computed the long 

memory parameters of the time series (Robinson and Yajima [23], Phillips 

and Shimotsu [20, 21, 22], Shimotsu [25]). The long memory parameters of 

return volatility and log-volume are denoted by 2
tR

d  and ln tV
d , respectively. To 

test the equality of long memory parameters we use (Robinson and Yajima 

[23]): 

h
1
 (n) = 1/ ln n,

h
2
 (n) = 1/ ln2 n,

m = n0,6 .

In the Tables 3 and 4 we present the results of the estimation of long mem-

ory parameters:

Table 3 

Long memory parameters 

CAC40 FTSE100

statistics 2
tR

d
tlnV

d 2
tR

d
tlnV

d

minimum 0.189 0.154 -0.054 -0.005

1st quartile 0.354 0.262 0.280 0.174

median 0.417 0.300 0.390 0.244

3rd quartile 0.456 0.348 0.488 0.285

maximum 0.679 0.495 0.717 0.427

Source: own elaboration based on Reuters data basis

All parameters of long memory are significant for French stocks. In eight 

cases the long memory parameters of 2

t
R  are less than of lnV

t
. The long memory 

parameters of 2

t
R  are greater than 0.5 in seven cases. This indicates that the time 

series are covariance non-stationary. Taking into account that critical values are 
2

1 = 2.706, 
2

1 = 3.841, 
2

1 = 6.635, at significance levels of 10%, 5% and 1%, 

respectively, in twelve cases there is no reason to reject the null hypothesis of the 

equality of estimated long memory parameters. 

In the case of English stocks 2
tR

d  > ln tV
d

 
for 69 stocks. 96 long memo-

ry parameters of volatility are significant (at 0.1 significance level). The same 
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conclusion is valid for 83 parameters for log-volumes. Some of the parameters 

are negative and close to zero. There is no reason to reject the null that they 

equal to zero. The null hypothesis of parameter equality is rejected for about 70% 

of stocks. Based upon the results above we analyzed the problem of the fractional 

cointegration of volatility and trading volume. We estimated the eigenvalues 1 

and 2 (multiplied by 10000) of matrix Ĝ and computed the values of function 

L(u) for m
1
 = n0,55 and v(n) = m

1 
–0,45. In the tables below we present the results 

of the estimation of long memory parameters in detail and the fractional cointe-

gration tests. 

The descriptions of the columns of Tables 4 and 5 below refers to notations 

described in the section Methodology (Fractional Cointegration).

Table 4 

Fractional cointegration (CAC40)

Company 2
tR

d
tlnV

d T0 
(h1) T0 

(h2) 1 2 L(0) L(1)

ACCOR 0.425 0.350 0.953 1.198 5.243 0.020 –1.713 –1.267

BNP PARIBAS 0.319 0.288 0.130 0.168 30.514 0.030 –1.713 –1.394

CARREFOUR 0.351 0.285 0.934 1.194 5.341 0.030 –1.713 –1.340

CREDIT AGRICOLE 0.373 0.320 0.308 0.386 22.102 0.036 –1.713 –1.251

EADS 0.305 0.375 0.816 1.016 25.224 0.027 –1.713 –1.208

ESSILOR INTL. 0.354 0.337 0.173 0.217 2.095 0.023 –1.713 –1.247

SAFRAN 0.353 0.386 0.363 0.449 5.975 0.029 –1.713 –1.171

SANOFI 0.299 0.348 0.443 0.563 4.471 0.021 –1.713 –1.319

SOCIETE 

GENERALE
0.357 0.353 0.008 0.010 32.197 0.026 –1.713 –1.348

SOLVAY 0.358 0.331 0.029 0.037 2.798 0.028 –1.713 –1.303

TECHNIP 0.448 0.365 1.535 1.941 11.138 0.026 –1.713 –1.295

VEOLIA 

ENVIRONNEMENT
0.274 0.306 0.280 0.355 30.874 0.026 –1.713 –1.307

Source: own elaboration based on Reuters data basis

The estimated rank of cointegration is equal to 0 for all stocks under con-

sideration. Despite the equality of long memory parameters fractional cointe-

gration does not exist. The same is observed when using v(n) = m
1 
–0,35 and 

v(n) = m
1 
–0,25. It is worth mentioning that for parameters m

1
 = n0,55 and m

1
 = n0,45 

the conclusions are analogous.
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Table 5 

Fractional cointegration (FTSE100)

Company 2
tR

d
tlnV

d T0 
(h1) T0 

(h2) 1 2 L(0) L(1)

ABERDEEN ASSET MAN. 0.403 0.411 0.035 0.043 72.322 0.072 –1.713 –1.165

AGGREKO 0.348 0.304 0.882 1.096 9.377 0.058 –1.713 –1.200

ASTRAZENECA 0.252 0.250 0.002 0.002 4.978 0.028 –1.713 –1.350

BABCOCK INTL. 0.210 0.152 0.453 0.557 11.075 0.221 –1.713 –1.116

BAE SYSTEMS 0.172 0.109 0.896 1.122 44.409 0.072 –1.713 –1.250

BARCLAYS 0.237 0.231 0.001 0.001 557.495 0.056 –1.713 –1.148

BRITISH SKY BCAST.
GROUP

0.262 0.203 0.676 0.842 12.532 0.078 –1.713 –1.211

BURBERRY GROUP 0.326 0.313 0.020 0.025 14.540 0.068 –1.713 –1.239

CAPITAL SHOPCTS.
GROUP

0.426 0.320 1.894 2.329 3.703 0.037 –1.713 –1.116

COMPASS GROUP 0.192 0.198 0.006 0.008 30.611 0.082 –1.713 –1.199

CRODA INTERNATIONAL 0.395 0.303 1.210 1.482 2.475 0.083 –1.713 –1.071

G4S 0.154 0.113 0.255 0.316 34.623 0.150 –1.713 –1.181

GLAXOSMITHKLINE 0.261 0.244 0.109 0.137 2.425 0.038 –1.713 –1.271

HARGREAVES LANSDOWN 0.277 0.305 0.057 0.073 9.415 0.078 –1.665 –1.263

INTL.CONS.AIRL.GP.(CDI) 0.277 0.123 1.064 1.376 10.683 0.037 –1.554 –1.118

LLOYDS BANKING 
GROUP

0.340 0.266 0.948 1.160 323.025 0.061 –1.713 –1.047

MORRISON(WM)SPMKTS. 0.237 0.264 0.054 0.068 6.362 0.053 –1.713 –1.257

NATIONAL GRID 0.218 0.267 0.505 0.626 8.365 0.049 –1.713 –1.184

PENNON GROUP 0.321 0.261 0.688 0.853 2.148 0.061 –1.713 –1.180

RANDGOLD RESOURCES 0.438 0.427 0.065 0.079 8.820 0.042 –1.708 –1.019

RIO TINTO 0.321 0.269 0.495 0.624 119.727 0.040 –1.713 –1.288

SAINSBURY (J) 0.202 0.261 0.769 0.963 17.965 0.060 –1.713 –1.249

SCHRODERS 0.284 0.342 0.655 0.796 59.326 0.044 –1.713 –0.897

SEVERN TRENT 0.221 0.173 0.369 0.461 5.346 0.068 –1.713 –1.233

SHIRE 0.207 0.241 0.187 0.239 8.458 0.045 –1.713 –1.330

SMITHS GROUP 0.314 0.285 0.143 0.177 5.677 0.051 –1.713 –1.167

SSE 0.317 0.218 1.752 2.153 3.693 0.055 –1.713 –1.105

TESCO 0.278 0.222 0.643 0.807 4.407 0.044 –1.713 –1.262

TULLOW OIL 0.391 0.343 0.376 0.467 16.349 0.053 –1.713 –1.197

UNITED UTILITIES 
GROUP

0.218 0.269 0.554 0.683 5.164 0.044 –1.713 –1.130

WOLSELEY 0.244 0.227 0.030 0.037 71.620 0.069 –1.713 –1.242

Source: own elaboration based on Reuters data basis
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4.2. Results of estimation of dependence between  
volatility and trading volume

The best fitted distributions are chosen using goodness of fit tests and infor-

mation criteria. In most cases the distributions that fit best are NIG and t-location-

scale distributions (hyperbolic distribution was fitted for only a few log-volume 

series of English stocks). Next, using selected distributions we transform the se-

ries to get uniformly distributed variables (comp. Fig. 1).
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Figure 1. Dependence structure of volatility and trading volume 

Source: own elaboration based on Reuters data basis
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Because of the large number of companies under investigation, the figure 

below presents only chosen (but typical) examples of dependence structures of 

volatility and trading volume that are modeled using copulas. The left column 

contains examples of stocks from the CAC40 (ALSTOM, CARREFOUR, VINCI), the 

right from the FTSE100 (ASTRAZENECA, KINGFISHER, TESCO).

There are concentrations of points in the bottom-left and top-right cor-

ners i.e. extremely low and extremely high values of volatility and trading vol-

ume occur together. To describe these patterns we apply a Gaussian copula, 

Archimedean copulas, survival copulas and their convex combination describe 

above.

The Tables 6 and 7 contain the results of the estimation and dependence 

measures. 
1
 and 

2 
are the parameters of copulas used in mixtures, first and sec-

ond, respectively. We compute the Kendall correlation coefficient  using convex 

combinations of copulas. Tail dependence coefficients, denoted by 
U 
(upper)

and 
L
 (lower) are scaled with a mixture parameter . The symbols of copulas

used refers to these from section Methodology (Copulas).

Table 6 

Estimation results of dependence for pair
2 lnt tR V

CAC40

company copula 1 2 U L

ALSTOM 5 1.31 0.66 0.73 0.30 0.22 0.00

CARREFOUR 6 0.73 1.50 0.96 0.27 0.37 0.02

VINCI 7 0.60  — — 0.23 0.31 0.00

FTSE100

company copula 1 2 U L

ASTRAZENECA 7 0.53 — — 0.21 0.27 0.00

KINGFISHER 5 0.50 0.26 0.80 0.19 0.20 0.00

TESCO 7 0.43 — — 0.18 0.20 0.00

Source: own elaboration based on Reuters data basis

For the most part the mixture sCl Gauss
C C  fits the data best for stocks 

traded on the CAC40. In some mixtures the estimated parameters were on 

a boundary, so these copulas were simplified and one-parameter copulas were 

used instead. On the whole, for English stocks the survival Clayton copula best 

fits the dataset. In the table below we present the statistics of the dependence 

measure of all stocks under consideration. 
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Table 7 

Dependence measures for pair 
2 lnt tR V  (CAC40)

CAC40

statistics
U L

minimum 0.16 0.12 0.00

1st quartile 0.21 0.22 0.00

median 0.23 0.27 0.00

3rd quartile 0.25 0.31 0.00

maximum 0.30 0.38 0.08

FTSE100

statistics
U L

minimum 0.08 0.01 0.00

1st quartile 0.12 0.08 0.00

median 0.15 0.12 0.00

3rd quartile 0.17 0.16 0.00

maximum 0.21 0.27 0.04

Source: own elaboration based on Reuters data basis

The dependence in the right tail (for extremely high values) is stronger 

than in the left tail (extremely low values). This is because of the high values 

of mixture parameter omega. So dependence in the right tail is dominant. The 

conclusions drawn for English stocks are analogous. Dependence in the right tail 

is stronger. 

4.3.  Analysis of dependence  
between stock returns and trading volume

We use VAR models applied to stock returns r
t
 and trading volumes tlogV

(long memory was removed from the series). To describe the heteroscedasticity 

observed we use a GARCH type model. As in the previous section we fitted some 

distributions for the residuals of the VAR models. Additionally, we considered 

GED and skewed t distributions. For the residuals of the equation for stock 

returns GED and skewed t distributions were generally. As with the results of 

the VAR models, for the pair volatility-volume, generally NIG distributions and 

the t-location scale were fitted for trading volumes.

Figure 2 presents typical examples of dependence structures of stock returns 

and trading volumes. 
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Figure 2. Dependence structure of stock returns and trading volume

Source: own elaboration based on Reuters data basis

There is a clustering of points in the top corners, which means that extreme-

ly a high trading volume is interrelated with high stock returns (positive and 

negative). The concentration of points for u
1

u
2
 < 0.5 is a sign of low 

trading volume linked with low volatility (stock returns close to zero).
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The computation results corroborate the observation made above. We com-

puted Kendall correlation coefficients for the whole sample and in all corners 

(for quantiles 0.01 and 0.99). When using whole samples, the correlation be-

tween stock returns and trading volumes of companies are close to zero. For 

some companies, in spite of their significance the computed values are small. 

For all companies under study, there is no correlation for the pairs low stock 

returns-low trading volumes and high stock returns-low trading volumes. The 

correlation coefficients u u1 20.99, 0.99 and u u1 20.01, 0.99 are significant for the major-

ity of the sample and greater than 0.1 To sum up, even using rank correlation 

coefficients it is impossible to model dependence structures. One can model re-

lationships for negative and positive returns separately but it is not then obvious 

what is the ratio of the correlations. Moreover, the correlations presented above 

are not equivalent to tail dependence coefficients.

The Tables 8 and 9 contain the results of the estimation of the parameters of 

the mixtures (absolute values of parameters are given) along with dependence 

measures upon copulas.

The coefficient 
HH
 describes the asymptotic dependence between extremely

high positive stock returns and extremely high volume, whereas 
LH
 is related to

extremely low stock returns. These coefficients are computed using mixing param-

eters. As in the previous section, 
1
 and 

2 
are the parameters of copulas used in

mixtures,  is the Kendall correlation coefficient and  is the mixture parameter.

Table 8 

Estimation results and dependence measures for pair lnt tr V

company 1 2 HH LH

ALSTOM 0.74 0.72 0.49 0.27 0.19 0.20

CARREFOUR 0.74 0.71 0.51 0.27 0.20 0.19

VINCI 0.52 0.68 0.51 0.23 0.13 0.18

company 1 2 HH LH

ASTRAZENECA 0.68 0.69 0.45 0.26 0.16 0.20

KINGFISHER 0.50 0.58 0.55 0.21 0.14 0.14

TESCO 0.57 0.60 0.55 0.23 0.16 0.14

Source: own elaboration based on Reuters data basis

In almost all cases the mixture
Cl Cl

C C
180 270

 fits the dataset best. 

The only exception is the English stock Evraz (mixture of 
Gum Cl

C C
270

1 ).

The table below presents the rank statistics of dependence measures for all stocks 

under study. 
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Table 9 

Dependence measures for pair lnt tr V

CAC40 FTSE100

statistics HH LH HH LH

minimum 0.13 0.05 0.05 0.10 0.03 0.00

1st quartile 0.21 0.13 0.16 0.15 0.08 0.07

median 0.23 0.15 0.17 0.18 0.10 0.10

3rd quartile 0.25 0.18 0.19 0.20 0.13 0.14

maximum 0.29 0.22 0.22 0.26 0.18 0.21

Source: own elaboration based on Reuters data basis

The dependence structures in the analyzed corners are not unique. For 15 

out of CAC40 companies the dependence between the pair high returns-high 

trading volume is stronger than that between low returns-high volume. English 

stocks are characterized mostly (in 59 cases) by the strongest high returns-high 

volume dependence. 

5. Conclusions

We analyzed the dependence stuctures of stock returns, volatility and trading

volumes of companies listed on the CAC40 and FTSE100. Additionally, we tested 

the MDH with long memory i.e. the equality of the long memory parameters of 

volatility and trading volume and fractional cointegration of these series. With 

some exceptions the estimation results of long memory parameters show that the 

series under study are stationary. 

Moreover, taking into account the lack of fractional cointegration, the ex-

tended hypothesis is rejected in all cases. This means that a common long-run 

dependence does not exist. In other words, the series are not driven by a com-

mon information arrival process with long memory. 

The correlation between volatility and trading volume is present for almost 

all stocks of companies under investigation. There exists a significant depen-

dence between high volatility and high trading volume. In general dependence is 

stronger for the French than for the English stocks. 

It was noted that the classical correlation coefficient (even rank correlation) 

does not allow the capture of the specific dependence structures of returns and 

trading volume. Using mixtures of rotated copulas and a Kendall correlation 
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coefficient based upon them, extreme return-volume dependence was investi-

gated. In the case of CAC40 companies we can conclude that high trading volume 

is not correlated as frequently with high stock returns as with low stock returns. 

For companies listed on the FTSE100 high stock returns are mostly related with 

high trading volume. 
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