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1. Introduction

Dependence structures in capital markets have recently attracted increasing

attention among economists, empirical researchers, and practitioners. In order 

to control a portfolio for risks, portfolio managers and regulators have to take 

into account a degree of dependence between international equity markets when 

studying returns across international financial markets. Therefore, the topic of 

asymmetric dependence structures, such as high dependence in a bear period of 

the stock market is very important for both the risk control and the policy man-

agement. In addition, the benefits derived from an international diversification of 

asset allocation are often affected by asymmetric dependence structures.

It is well known and widely discussed in the literature that linkages among 

international capital markets are mostly asymmetric. From this asymmetry re-

searchers draw a conclusion that in a bear phase, returns tend to be more inter-

related than they are in a bull phase of capital markets. From this observation 

serious theoretical consequences for an international portfolio follow. The most 

important implication is a possible loss of diversification benefits in a bear time 

due to the rise in the dependence among capital markets. In other words, inter-

national portfolios become much more risky in bad times of stock markets that 

assumed in good times. The observed asymmetric dependence is an essential 

source of rise in the costs of a diversification with foreign equities.
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In this article we investigate how model selection affects the calculated risk 

of financial position. The two standard models are mean-variance Markowitz 

model and multivariate GARCH model. Both models assume symmetric and thin-

tailed distributions of returns, in particular they assume the normal distribution. 

Recently developed models based on copula functions are both flexible and con-

venient to model anomalies in distributions, such as an asymmetry or fat-tails. In 

this article we focus on regime switching copula models. We consider two risk 

measures: Value at Risk and Expected Shortfall. The expected risk derived on the 

basis of the regime switching copula model is compared to the expect risks ob-

tained by using the Markowitz model and the multidimensional GARCH model. 

A model misspecification may cause a number of problems. Incorrect evalua-

tion of the expected value of a financial position is one of the most serious draw-

backs of the financial models. However, a risk underestimation may cause even 

worse consequences. Most of risk measures are strongly, or entirely, dependent 

on distributions of tails. Especially, the dependence of extreme assets’ values 

substantially affects the distribution of the portfolio value. Therefore, an omis-

sion of an asymmetry or a high kurtosis of assets’ distributions may be a reason 

for a miscalculation of risks.

The remainder of the contribution is organized in the following way: in sec-

tion 2 we conduct the literature overview concerning the dependence concepts, 

including regime switching models and copulas and discuss the recent contribu-

tions to the subject; in section 3 the dependence measures and copulas are over-

viewed; in the following section the copula regime switching model is described; 

in the fifth section risk measures based on copula models are discussed; in the 

sixth section we present the data, report and discuss the results; section 7 con-

cludes the paper.

2. Literature overview

Relations among international stock markets have been investigated in many

papers, especially in the period of the financial crises. The topic under study 

is important for market participants, because, due to the globalization process, 

the global markets are becoming more and more dependent. This observation 

follows from the liberalization and deregulations in both money and capital 

markets. In addition, the globalization process diminishes opportunities for 

international diversification.

Numerous recent studies deal with an asymmetry in dependence structures 

in international stock markets. They reveal two interesting asymmetries. The de-

pendence tends to be high in both highly volatile markets and bear markets. 
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While in some studies, the evidence of the first type of asymmetry is shown, 

several other studies found the second asymmetry. In one of the earliest contribu-

tion, Hamao, Masulis, and Ng [18] investigated the relations among equity mar-

kets across Japan, the U.K., and the U.S. using the daily data of stock indices. The 

authors estimated the GARCH-M model. Using this model the authors established 

volatility spillover effects from the U.S. and U.K. stock markets to the Japanese 

market. King and Wadhwani [23] developed a contagion mechanism model. They 

detected contagion effects. The contributors stressed that an increase in volatility 

by using a high frequency data from the stock markets in Japan, the U.K., and the 

U.S strengthened these effects. These findings were supported to some extent by 

Lin et al. [26] who analysed two international transmission mechanism models 

based on the daily returns of stock indices in Japan and the U.S. Erb et al. [14] 

found that monthly cross-equity correlations among the G7 countries were high-

est when any of two countries were in a recession. In addition, the contributors 

claimed that they are much higher in bear markets. In the paper by Longin and 

Solnik [27], the monthly data of stock indices for several industrial countries 

were analyzed. The contributors, using a multivariate GARCH model, found that 

the correlations between major stock markets raised in periods of a high volatil-

ity. On a basis of the multivariate SWARCH model, Ramchand and Susmel [36] 

found that monthly returns of stock markets in the U.K., Germany, and Canada 

tended to be essentially more correlated with the U.S. equity market during pe-

riods of a high U.S. market volatility. The similar results could be found in King, 

Sentana, and Wadhwani [22], Ball and Torous [5], Bekaert and Wu [6], Ang and 

Bekaert [2], and Das and Uppal [10].

Following Davison and Smith [11] and Ledford and Tawn [25], Longin and 

Solnik [28] derived a method to measure the extreme high correlation by the 

conditional tail correlation based on extreme value theory. The contributors es-

tablished that the conditional correlation between the U.S. and other G5 coun-

tries strongly increases in bear markets. In contrary, the conditional correlation 

does not essentially increase in bull markets.

In more recent studies by Campbell et al. [7], Ang and Bekaert[2], Das and 

Uppal [10], Patton [34], and Poon et al. [35], the existence of two regimes in 

international equity markets was suggested: a high dependence regime with low 

and volatile returns and a low dependence regime with high and stable returns.

Based on this hypothesis, Ang and Bekaert [2] estimated a Markov switch-

ing multivariate normal (MSMVN) model using the U.S., the U.K., and German 

monthly stock indices. The contributors detected some evidence that a bear 

regime is characterized by low expected returns, high volatility, and high cor-

relation, whereas a normal regime is characterized by high expected returns, 

low volatility, and low correlation. Their model was able to replicate Longin and 
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Solnik’s [28] results. Referring to Ang and Chen [2], they demonstrated that an 

asymmetric bivariate GARCH model, widely used in the literature to analyze the 

international stock markets, cannot replicate them. 

In recent times, copulas have become a major tool in the finance for model-

ling and analyzing dependence structures between financial variables. In contrast 

to the linear correlation, the copula reflects the complete dependence structure 

inherent in a random vector (see [13]). In finance, copulas have attracted much 

attention in the calculation of the Value-at-Risk (VaR) of market portfolios (see 

e.g. Junker and May, 2005; Kole et al., 2007 and Malevergne and Sornette, 2003) 

and the modelling of the credit default risk.

Ball and Torous [5] and Guidolin and Timmermann [17] investigated the 

economic significance of their empirical findings from a risk management point 

of view. Rodriguez [37] used copula model with Markov switching parameters. 

Okimoto [32] stressed that ignoring the asymmetry in bear markets could be 

costly when risk measures are evaluated. In his contribution, using a copula 

based regime switching Markov model, he concentrated on the value at risk (VaR) 

and expected shortfall (ES).

According to his calculation, ignoring such an asymmetry in bear markets 

significantly affects risk measures, i.e. the 99% VaR is undervalued by about 10%, 

while the expected shortfall is undervalued by about 5% to 10% consistently over 

the whole significance level between 90% to 99%. This is essential for the risk 

management.

The empirical literature on the optimal choice of the parametric copula fam-

ily for the VaR-estimation can be clustered into three groups.

The first group of contributors claims that the elliptical copulas are opti-

mal. The representative of this stream of papers is e.g. paper by Malevergne and 

Sornette [29]. This is one of the first empirical studies on the optimality of cop-

ula models for the modelling of dependence structures of linear assets. The au-

thors, based on the dataset consisting of six FX futures, six commodity prices and 

22 stocks listed on the NYSE, demonstrated that the dependence structures of 

the majority of bivariate portfolios built from these assets can be correctly reflect-

ed by a Gaussian copula. However, in the opinion of the contributors, their result 

can be biased. The reason is that Student’s t copula can easily be mistaken for 

a Gaussian copula. In addition, Malevergne and Sornette [29] did not include the 

estimation of a risk measure or Goodness of Fit –tests (abbreviation GoF-tests). 

Kole et al. [24] found, on the basis of just one trivariate portfolio (one stock-, one 

bond- and one REITS-index), that the Student’s t copula is the best for modelling 

the dependence structure of linear assets. DiClemente and Romano [12] using 

the 20-dimensional portfolio of Italian stocks, demonstrated that a model incor-

porating margins following an extreme value distribution and an elliptical copula 



The optimal portfolio in respect to Expected Shortfall: a comparative study 

21

can yield much better VaR-estimates than the classical correlation-based model. 

However, they used neither Archimedean copulas nor copula-GoF- tests. In con-

tribution by Fantazzini [15], it is shown that three bivariate portfolios built from 

stock indices can be well modelled by a constant or dynamic Gaussian copula in 

order to estimate VaR properly.

The second stream of studies justifies an optimality of Archimedean copu-

las. Junker and May [21] argued that a transformed Frank copula with GARCH 

margins can improve VaR- and ES-estimates in comparison to elliptical copula 

models. However, their conclusions are based solely on the single bivariate port-

folio of German stocks. In addition, they only apply GoF-tests for general distri-

butions. They were not adjusted to the characteristics of copulas. Similar results 

were presented by Palaro and Hotta [33] for the bivariate portfolio based on 

the S&P 500- and the NASDAQ- index. The authors showed that a symmetrised 

Joe-Clayton copula joint with GARCH margins performs significantly better than 

elliptical copula models.

Recent studies, belonging mostly to a third cluster of research, demonstrate 

that the optimal parametric copula as well as the strength and structure of the 

dependence between asset returns are not constant over the time. In order to 

allow the parametric form of the copula to change over time more recent studies 

like the ones addressed above Rodriguez [37], Okimoto [32], Chollette, Heinen, 

and Valdesogo [8] and Markwat, Kole, and van Dijk, [31], Weiss [38] apply the 

convex combinations of copulas. The contributors drew a conclusion that more 

flexible mixture copula models yield better VaR and ES estimates than uncondi-

tional copula models.

The contributors stressed that copula models perform better than correla-

tion-based models with respect to the estimation of VaR. This was the case when 

the optimal parametric copula family was known ex ante. 

The main aim of this contribution is a comparison of the expected shortfall 

for returns derived on the basis of the Markowitz model, the multidimensional 

GARCH model and the copula regime switching model. 

3. Dependence measures based on copulas

The correct evaluation of the dependence between assets’ interest rates is essential 

for an accurate assessment of an investment risk. In the case of risk management, 

the dependence between negative values, in particular between extreme negative 

values plays a key role. Especially, if such a dependence is substantial, then an 

investor can lower the risk by diversification of a portfolio to less than expected. 

In this section we present some functions measuring the dependence between 
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random variables and discuss their intuitive meaning. Moreover, we describe the 
presented dependence measures’ relationship with copulas.

3.1. Exceedance correlation coefficient 

The most traditional dependence measure is Pearson correlation. However, 
it measures only linear dependence and works only in the range of the spheri-
cal and elliptical distributions. The exceedance correlation is the generalized 
Pearson coefficient which measures asymmetric dependence. It is defined as the 
correlation between two variables, conditional on both variables being below or 
above some fixed levels. Exceedance correlation coefficients between random 
variables X and Y are defined as: 
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where 
1 2

Lecorr  is lower exceedence correlation, 
1 2

Uecorr  is upper exceedence cor-

relation and 
1
, 

2 
are fixed thresholds. 

Properly calculated exceedance correlation would be an efficient tool in risk 
management, where negative extreme values of an investment return are crucial. 
However, this coefficient has some drawbacks. For instance, it is computed only 
from observations which are below (above) the fixed limit. Therefore, as the limit 
is further out into the tail as exceedance correlation is computed less precisely. 
Another inconvenience with the exceedance correlation is that it is dependent on 
margins, thus it cannot be calculated only from the copula connecting variables. 

3.2. Tail dependence

Another tail dependence measure is quantile dependence. For random 

variables X and Y with distribution functions F and G, respectively, the lower tail 

dependence at threshold  is defined as 1 1P Y G X F . Analogously, 

the upper tail dependence at threshold  is defined as 1 1m P Y G X F . 

The dependence measure which is particularly interesting is the tail dependence 

obtained as the limit of a quantile dependence. We define lower tail dependence 

L 
of X and Y as: 

1 1

0
lim ,L P Y G X F  (3)

and upper tail dependence 
u 
of X and Y as: 

1 1

1
lim .U P Y G X F  (4)
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Variables X and Y are called asymptotically dependent if 
L
 (0,1] and as-

ymptotically independent if 
L 
= 0 For variables connected by the copula C, lower 

tail dependence 
L
 and upper tail dependence 

U
 can be computed as follows:

0

,
lim ,L
u

C u u

u   (5)

1 1

,
lim ,U
u

C u u

u (6)

where C is the survival copula defined by:

1 1 1, , ,C u v C u v u v u  for u,u  (0,1]  (7)

Unlike exceedance correlations, tail dependence is independent of margins. In 

the most cases, for a given copula, one can simply calculate tail dependences using 

formulas (5) and (6). In Table 1, we present results for the copulas used in the paper.

Table 1 

Tail dependencies for Gaussian, BB1, BB4, BB7 copulas

L U

Gauss
C 0 0

,C
1BB

1

2
1

2 2

4

,

BB
C

1
1

2 2
1

2

7

,

BB
C

1

2
1

2 2

3.3. Kendall’s 

Another class of dependence measures is based on ranks of variables. The 

two most popular rank correlations coefficients are Kendall’s  and Spearman’s 

 Both rely on the notion of the concordance. Let (x
1
, y

1
) and (x

2
, y

2
) be two

observations of the random vector (X, Y). We say that the pair is concordant 

whenever (y
1
 – y

2
)(x

1
 – x

2
) > 0 , and discordant whenever (y

1
 – y

2
)(x

1
 – x

2
) < 0. 

Intuitively, a pair of random variables are concordant if large values of one vari-

able occur more likely with large values of the other variable. 

For random variables X and Y, Kendall’s  is defined as:

1 2 1 2 1 2 1 20 0 ,P y y x x P y y x x
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where (x
1
, y

1
) and (x

2
, y

2
) are independent observations of (X, Y). In terms of 

copulas, Kendall’s  has concise form. For the pair of random variables X and Y 
and its copula C, we have:

20 1

4 1
[ , ]

, , .C C u v dC u v  (8)

Since copula is invariant with respect to any monotonic transformation, 

Kendall’s  has also this property. From the formula (8) we see that Kendall’s  
does not depend on marginal distributions. 

4. Compared models

In this section we present the regime switching copula model with GARCH
margins and the estimation procedure. Other models used in this article are: 

the Markowitz model and multivariate Generalized Autoregressive Conditional 

Heteroscedasticity (mGARCH) model. 

The Markowitz model is a standard model introduced by Markowitz. This 

model is based on a normal distribution assumption and does not include any 
dynamic changes. There are numerous papers stressing the inadequacy of this 

model. We believe that there are still individuals using this method. Thus, we 

decided to compare this method to other in the context of our study. Markowitz 

model’s parameters can be equivalently estimated using the likelihood function 

maximization or the least square method.
Switching models were introduced by Hamilton [19] and widely analyzed by 

Hamilton [20]. Let y
t 
=(y

1t
, y

2t
) be a pair of interest rates of analyzed indices, and 

let Y
t 
=(y

t
, y

t–1
, y

t–2
,...) be the series of observations available at the time t. 

We denote the two-state Markov state process by s
t
, which has two possi-

ble values, say 1 and 2, we call these states regimes. We choose the first regime 

copula from copulas with non-zero tail dependencies, namely BB1, BB4 and BB7 

copulas. The second copula is the Gaussian copula, which corresponds to sym-

metry and tail independence of the investigated variables.

The conditional joint density function f for y
t 
is defined as:

1 1 1 1 2 2 2 1 1 1 2 2 2| , ( ; , ( ; ) ( ; ) ( ; )) ,
j

t t t t t t tf y Y s j c F y F y f y f y  (9)

where F
i
 and f

i
, for i = 1,2 , are the marginal distribution functions and density 

functions of corresponding variables, and 
i
 is a parameter vector for the mar-

ginal distribution. The probability that the state i precedes the state j is denoted 

by 
ij
 = P[s

t
 = j|s

t–1
 = i]. 
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All four probabilities form transition matrix:

11 12 11

21 22

1
P

11

22 221
. (10)

The estimation of the regime switching copula model is based on the 
maximum likelihood estimation. Unfortunately, the computing power need-
ed to maximize likelihood function is enormous. To simplify the calculation, 
the decomposition of likelihood function to margins likelihood functions and 
the dependence likelihood function is performed. Formally, for a given sample 
Y
 
=(Y

1
, Y

2
,..., Y

T
) , the log-likelihood function is defined by:

1
1

ln; , ( | ; , ),
T

t t

t

L f y YY

and it is decomposed to L
m
 and L

c 
such that:

; , ; ; , ,m cL L LY Y Y

where:

1 1 1 1 1 2 2 2 1 2
1

ln ln |; | ; ; ,
T

m t t t t

t

L f y Y f y YY  (11)

1 1 1 1 1 2 2 2 1 2
1

ln |; , [ |( ; , ; ; .
T

c t t t t

t

L c F y Y F y YY   (12)

The parameters of the model are estimated as follows. In the first step we 
estimate the parameters 

1
 and 

2 
of the marginal distribution. This step is per-

formed by the maximization of the likelihood function defined by (11). In the 
second step we maximize the likelihood function defined by (12) to estimate 
parameters 

1
 and 

2
 of copulas c(1)and c(2), and transition matrix given by (10). 

Note that parameters 
1
,
 2
,
 
 
are in fact collections of parameters.

A method of the estimation of marginal distributions depends on the model 
which is chosen to describe the specific marginal variable. To model the mean of 
a time series, we use the simple autoregressive model. As we mentioned before, 
usually for time series of returns hypotheses of normal distribution of residuals 
are rejected. In particular, investigated time series are fat-tailed, asymmetric and 
heteroscedastic. Therefore, for every analyzed time series r

t
, we use the following 

AR(1)-GARCH(1,1) model:

0 1 1t t tr r  (13)

2
1 1t t th h  for , ; (14)

where 
t
 = h

t 
e
t 
 and e

t
 is a white noise. Although, with respect to an asymmetry 

and a fat tail, e
t
 is described by the skewed Student-t distribution. The skewed 
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Student-t  is a two parameter distribution. For v  2 and   [–1,1], the skewed 

Student-t density function, denoted by St, is defined by: 

1
2 2

1
2 2

1
1 dla

2 1

1
1 dla

2 1

( )

, ( )

  

( ) ,

  

bx a a
bc x

b
St x

bx a a
bc x

b

 (15)

where 2 2

1

2 2
4 1 3

1
2

2

, , ,a c b a c
v

 

The second step is the estimation of copulas parameters and transition prob-

abilities. To do so, we use Hamilton filter. For the transition matrix P given by 

(10), we define: 

1

11

|

|

|

,
ˆ

ˆ
ˆ( )

t t t

t t T

t t t

                                           (16)

1| |
ˆ ˆ ,T

t t t tP
                                               (17)

where | [ | ; ]ˆ
t t t tP s j Y  and 1 1 || [ ; ]ˆ

t t t tP s j Y  the Hadamard’s multipli-

cation denoted by  means the multiplication coordinate by coordinate. The 
vector of copulas’ densities is denoted by 

t
,

1

1 1 1 2 2 2 1

2

1 1 1 2 2 2 2

( ; , ; ; )
.

( ; , ; ; )

t t

t

t t

c F y F y

c F y F y
 (18)

The log-likelihood function defined by (12) for the observed data can 
be written as:

1
1

ln 1 |; , ,ˆ
T

T

c t t t

t

L Y  (19)

where the initial value ˆ
t1|0
 is the limit probability vector:

22

11 22

1 0

11

11 22

1

2

1

2

|
ˆ

p

p p

p

p p

 (20)
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Models based on mGARCH have been recently broadly used and modified. 

In this article, conditional mean dynamics is described by the VAR(1) model. For 

details of the recent study we refer to Croux and Joossens [9]. To model condi-

tional correlation, we use the Dynamic Conditional Correlation (DCC) model 

with normal conditional distributions.

Under this model the conditional mean of the multidimensional time series 

y at the time t is computed as follows:

1 1y Ayt t[ | ]t t ,  (21)

where  is constant, 
t
 is the information set available at the time t and  is a vec-

tor autoregressive matrix. The error term 
t
 at the time t is defined by:

t t tH z ,( / )1 2  (22)

where z
t
 is a sequence of N- dimensional, in our case N = 2, i.i.d. random vector 

with the following characteristics: E(z
t
) = 0 and t t

T

NE z z I , therefore z
t
~N(0, I

N
). 

The dynamic covariance matrix H
t 
is decomposed to:

 H
t 
= D

t 
R

t 
D

t
, (23)

where D
t  
is a dynamic variance matrix and R

t
 is a dynamic correlation matrix. In 

the two-dimensional case, 11, 22,diag ,t t tD h h , where

1t th 1 1.t th  (24)

The correlation matrix R
t
 is decomposed as follows:

1 1

2 2diag( ) diag( ) .t t t tR Q Q Q  (25)

The correlation driving process Q
t 
is defined by:

*

1 11 ,t t tQ Q P Q  (26)

where Q  denotes unconditional correlation matrix of the stantarized errors and 
1 1

* 1 1
2 2diag( ) diag( ) .t t t t t tP Q D Q D Q  (27)

This particular specification of the DCC model has been proposed by Ailelli [1].

5. Portfolio optimization

The portfolio optimization problem is widely analyzed. There are two main 

goals to achieve in any portfolio optimization problem. The first aim is the maximi-

zation of the expected value of the portfolio. The most natural way is to maximize 
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the expected nominal value, a generalization of this approach is the maximization 

of an expected utility. In this article, we do not consider utility functions, for more 

details about a maximizing an expected utility see Föllmer and Schied [16]. The 

second aim in the portfolio optimization is to minimize a risk. There are numer-

ous approaches to a concept of risk. The most standard understanding of a risk is 

an uncertainty. For any portfolio, its risk may be understood as the variance of the 

future value of the portfolio. This concept was firstly introduced in [30] and the 

corresponding portfolio optimization problem was solved in this paper.

In this article, we deal with the concept of risk proposed in [4]. We analyze 

the risks of the financial positions in the one period case. It means that the value 

of the financial position under study in the end of the period turns into a random 

variable. 

The function : , where  is the family of all attainable financial posi-

tions, is called risk measure if it satisfies the following properties for all financial 

positions X, Y:

1. Monotonicity:

If X  Y, then (X)  (Y). (28)

2. Cash invariance:

If m , then (X + m) = (X )– m. (29)

The interpretation of monotonicity is clear: The increase of a financial posi-

tion’s payoff profile do not increase its risk. The cash invariance is motivated by 

the interpretation of (X) as a capital requirement. If the amount m is added to 

the position and invested in a risk-free manner, the capital requirement is re-

duced by the same amount.

It is usually assumed that the portfolio diversification should not increase 

the risk. Convex risk measures has this property, the risk measure  is called con

vex risk measure if it satisfies the following convexity property for all financial 

positions X, Y:

1 1 ( ),X Y X Y , for all 0  .  (30)

Moreover the convex risk measure  is called coherent risk measure if it satisfies 

the following positive homogeneous property:

,X X , for all 0  and X  .  (31)

Value at Risk (VaR) is an approach to the problem of measuring the risk of 

a financial position X based on specifying a quantile of the distribution of X un-

der the given probability measure. Value at Risk is the smallest amount of capital 

which, if added to X and invested in the risk-free asset, keeps the probability of 

a negative outcome below some fixed level.
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For X   and   (0,1) we define Value at Risk at level  as:

VaR  (X)  inf |P[ 0]m X m .   (32)

In the other words, VaR  (X) is (1 – )-quantile of the variable (–X). Clearly, 

VaR is a positively homogeneous risk measure. Generally, Value at Risk is not 
a convex risk measure. However, it is convex if it measures a risk of financial posi-

tions come from some particular classes. For instance, VaR is convex risk measure 

if X consists of only normally distributed financial positions.
This risk measure has a clear interpretation and is recommended by numer-

ous financial institutions and presented in documents such as the Basel Accords. 

However, the absence of the convexity is a substantial objection. This disadvan-
tage of VaR led researchers to convex risk measures which have similar inter-

pretation as Value at Risk. It appears that, so called (ES), is 

a convex risk measure.
For X   and   (0,1) we define  as:

ES  (X)  E[ |VaR ]  (33)

This convex risk measure is also called Conditional Value at Risk (CVaR), 
Average Value at Risk (AVaR), Tail Value at Risk (TVaR), Mean Excess Loss or 

Mean Shortfall. However, there are other risk measures defined in some papers 

under these names. In this article, the risk measure defined by (33) is called an 

Expected Shortfall. Clearly, ES (X) VaR
 
, for any   (0,1). 

In general case it is difficult or impossible to find an analytical form of 

ES. One can notice that there does not exist an analytical form of VaR for normally 

distributed financial positions. We estimate VaR using the Monte Carlo method. 

For every analyzed model, we simulate 1,000,000 observations. It is usually rec-

ommended to simulate 100,000 observations. However, we are mostly interested 

in extreme observations, namely those which are below VaR -level. In the formula 
(33), one can see that ES  is determined by a conditional distribution, in particu-

lar by the financial position’s distribution in the lower -tail. 

6. The data and the estimation results

The database consists of prices of three stock market indices. Namely, the 
American DJIA, the German DAX and the Austrian ATX. In order to avoid intro-

ducing an artificial dependence due to the difference in closing times of stock 

exchanges around the globe, we work with Wednesday to Wednesday returns. 
Comparing to daily returns, weekly return processes have lower autocorrelation 
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and avoid the missing data problem. This gives us a sample of 689 weekly returns 

from January 2000 to March 2013. We apply continuous (logarithmic) returns:

1

100 log t
t

t

r ,  (34)

where 
t
 is the price index at the time t. 

Firstly, we present some descriptive statistics in Table 2.

Table 2 

Logarithmic rates of return time series summary statistics

ATX DAX DJIA

Mean 0.1036 0.0248 0.0335

Median 0.4157 0.3984 0.2140

Std. dev. 3.4646 3.4630 2.5782

Kurtosis 16.7931 5.1127 7.7125

Skewness –1.9245 –0.6643 –0.9464

In the period under study we observe an insignificant positive means in 

all the three indices. A relatively large absolute value of median suggest asym-

metries in the examined time series. Negative skewnesses confirm this con-

jecture. These asymmetries suggest that normal distribution should not be 

used to model these time series, and high kurtosis in all the three time series 

confirms that.

Table 3 presents empirical dependence measures for analyzed pairs of price 

indices.

Table 3 

Empirical dependences between price indices’ time series

ATX/DAX ATX/DJIA DAX/DJIA

0,6439 0.6056 0,7863

Kendall’s 0.4135 0.3704 0.5848

L
0.6421 0.5072 0.5797

U
0.4638 0.3623 0.5652

1 2
1 1,

L

Q Q
ecorr 0.7179 0.6441 0.6781

U
1 2
3 3,Q Q

ecorr 0.3798 0.5302 0.7183
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Here  is Pearson’s correlation, 1Q   and 
2Q  are -quartiles of a realized vola-

tility series and a daily volume series, respectively. Tail dependencies 
L 
and 

U
 are 

approximated by 1 10.1 | 0.1P Y G X F  and 1 10.9 | 0.9P Y G X F , 
respectively.

One can observe the strong and significant linear correlation between the 
indices under consideration. As expected, the strongest dependence is observed 
for the DAX/DJIA pair. Despite the many drawbacks of linear correlation, it is 
worth to mention that a portfolio construction is very sensitive to the degree of 
dependence. 

Asymmetries in tails are observed for the ATX/DAX and ATX/DJIA pair. For the 
DAX/DJIA pair, the lower and the upper estimated tail dependence are at similar 
levels. The same result is observed for exceedence correlations.

A multidimensional GARCH(1,1) model with conditional mean described by 
the VAR(1) is supposed to eliminate the incorrect assessments of the foregoing 
model. Table 4 presents A matrices and constants  from equation (21) for the 

three pairs of analysed time series:

Table 4 

Vector autoregressive parameters

ATX DAX ATX DJIA DAX DJIA

ATX –0.0738 0.0855 ATX –0.1274 0.2409 DAX –0.0937 0.0880

DAX –0.0640 –0.0009 DJIA –0.0006 –0.0754 DJIA –0.0265 –0.0479

0.1118 0.0235 0.1117 0.0334 0.0160 0.0333

Estimated parameters of GARCH(1.1) model. described by (24) and (26). 
are presented in Table 5:

Table 5 

Multidimensional GARCH model parameters

ATX 0.4952 0,2281 0,7467

DAX 1,2810 0,3028 0,6133

DCC 0,0363 0.9513

ATX 0.5308 0.2278 0.7411

DJIA 0.5657 0.2451 0.6830

DCC 0.0315 0.9607
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DAX 1.2065 0.2986 0.6239

DJIA 0.5601 0.2505 0.6802

DCC 0.0495 0.8987

Using methods described in section 3 we conducted the estimation of param-

eters of models for margins and regime-switching copulas. Table 6 contains the es-

timation results of AR(1)-GARCH(1.1) models along with Skeweed-t distributions. 

Table 6 

Estimation results of models for margins

parameter
0 1

v

ATX 0.2868 –0.0267 0.4007 0.126 0.8315 –0.2211 7.5306

DAX 0.2616 –0.1133 0.5833 0.1871 0.7703 –0.3183 9.4504

DJIA 0.172 –0.1215 0.2738 0.1455 0.8127 –0.2332 7.7701

The estimated results confirm the stylized facts about log-returns: the 

skewness and the fat-tailedness. All of the estimated parameters are significant 

(5% level) with one exception (the AR(1) term in the ATX model).

We tested the correctness of the specification using the Ljung-Box and 

Engle tests applied to standardized residuals which are transformed to the 

uniform using the estimated Skewed-t distributions. Through goodness of fit 

tests along with the BDS test (Brock-Dechert-Scheinkman) we were able to check 

the uniform distribution of standardized residuals. 

In the next step we estimated the regime switching copulas. To describe 

a dependence asymmetry we use two-parameter Archimedean copulas (BB1, 

BB4 and BB7) and Gaussian copula to model symmetric dependence with tail-

independence patterns. In Table 7 we present the estimation results.

Table 7 

Estimation results of regime switching copulas

pair of indices first regime copula
(1)

1

(2)

1 2
p
11

p
22

ATX/DAX BB7 1.5723 1.5644 0.3430 0.9983 0.9978

DAX/DJIA BB1 0.6434 1.8649 0.4356 0.9916 0.9246

ATX/DJIA BB1 0.7751 1.3501 0.3561 0.9984 0.9983

Table 5 cont. 
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All of the estimated parameters are significant. The copulas that fit the best 
are chosen using AIC and BIC information criterions. The correctness of the cop-
ula specification are validated by an Anderson-Darling test applied to the first 

derivative of copulas: |
dC

C u v
du

and |
dC

C v u
dv

.

In addition, based on estimated parameters of the transition matrix we com-
puted the mean time of return to regimes. In all cases this value is lower for the asym-
metric regime with a dependence in tails. For all pairs, the dependence between ex-
tremely low returns is stronger than between extremely high returns. The strength of 
dependence measured by weighted Kendall coefficients is the strongest for the DAX/
DJIA pair (with value 0.564) and the weakest for the ATX/DJIA pair (value 0.352).

The standard method of visualization of measure of risk under the assumed 
model is drawing of the efficient frontier line. An efficient frontier for a given 
measure of risk is the curve showing the minimal risk of portfolio which exhibit 
the calculated expected returns.

For all three indices’ pairs and the two risk measures, Figures 1–6 illustrate simi-
lar relationships. 
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Figure 1. Efficient frontiers of Value at Risk for ATX/DAX pair
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Figure 2. Efficient frontiers of Expected Shortfall for ATX/DAX pair
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Figure 3. Efficient frontiers of Value at Risk for ATX/DJIA pair
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Figure 4. Efficient frontiers of Expected Shortfall for ATX/DJIA pair
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Figure 5. Efficient frontiers of Value at Risk for DAX/DJIA pair
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Figure 6. Efficient frontiers of Expected Shortfall for DAX/DJIA pair

Relatively small means of returns, presented in Table 2 cause a rapid increase of 

risk with increasing an expected portfolio return for the Markowitz model. Clearly, 

by definition, for every pair and every model ES is higher than VaR, see formula (33). 

Since negative expected returns are not interesting from a practical point of view, the 

included figures outline only the risks for positive expected returns. 

For low expected returns (lower than 0.2 for ATX/DAX and ATX/DJIA pairs and 

lower than 0.05 for DAX/DJIA pair), the mean-variance model underestimates risks 

and after reaching some level overestimates them. The similar relation is observed 

for the GARCH model applied for the DAX/DJIA pair, but for the higher level. For 

ATX/DAX and ATX/DJIA pairs, the multivariate GARCH model underestimates risks 

for almost every level.

The level of an expected return, for which the minimum of a risk is attained, 

is determined by the forecast’s multidimensional mean. At this particular time, 

means of all the three indices are the lowest for the Markowitz model, means of 

ATX/DAX and ATX/DJIA pairs are at similar levels for the switching copula model 

and the GARCH model. 

With increasing of the expected return, VaR and ES increase with the similar 

speed for models based on a normal distribution. However, for all three pairs, ES 

increases essentially faster than VaR in the case of copula based model. A positive 

tail dependence in switching copula models and relatively fat tails of marginal dis-

tributions, such as a skewed t distribution, are reasons for this observation. 

7. Conclusions

Recent contributions suggest non-normal distributions of multivariate asset’s 

returns. Evidences for an asymmetry in univariate distributions and in dependences 

have been found. Furthermore, the kurtosis of an univariate distribution and 
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extreme dependences are found to be greater than under the assumption of nor-

mal distribution. In the three analysed pairs of assets, all of these anomalies have 

been detected. Any model in which the conditional distribution is assumed to be 

normal does not fit since statistical tests reject hypothesis of normal distributions.

For the three pairs under study a switching copula models fit well. This 

model includes asymmetries and fat tails for both margins and for dependences. 

Conducted statistical tests confirmed goodness of fit for the switching copula 

models. Comparing results of a risk calculation, for the GARCH model and the 

Markowitz model to the switching copula model, we observed discrepancies.

A mean-variance model does not assume a dynamic structure of series, the 

expected mean of the series is significantly different for a dynamic model. Thus, 

a multivariate GARCH and a switching copula models forecast the mean at the 

similar level, while the estimated mean, using Markowitz model, stands out. 

Misspecifications may cause both, an underestimation and an overestimation 

of a risk. Slopes of efficient frontiers describe the speed of increase of a risk with 

increasing expected return. It is observed that slopes for models which neglect 

anomalies, such as asymmetries and fat tails, are biased. In particular, a change of 

slope with the increasing expected return is underestimated. 

Evaluations differ particularly for the Expected Shortfall risk. A tail’s de-

pendences and fat tails are ignored in models based on a normal distribution. 

Expected Shortfall measures not only a frequency of a loss, but also its size. The 

supposition that observed anomalies of the multivariate distribution of an assets’ 

returns vector affects the size of an extreme return is confirmed. 
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