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of supervising the processes of production. These charts, introduced by Shewhart 
(1931), are essentially based on the interpretation of mean, standard deviation, 
and range of samples obtained from production processes.

Control charts try to determine whether processes are still under control. 
S-chart, which assumes that the quantity that is to be 

controlled follows a normal distribution. In this case, the -chart monitors the 
process mean and checks whether the controlled sample values lie between two 
acceptance boundaries. Additionally, the S-chart checks if the -
ies are still represented by the variance of the monitored process and shows off 

changed. 
Here, S
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Burr (1967) analyzed the suitability of 
from non-normal parent populations. His results showed that the usual boundar-

the normal distribution. In line with these results, Chan et al. (1988) concluded 
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that charts, which are designed for normal distributed data, do not work well if 

-

the nature of the process.
More recent research by Riaz and Saghir (2007) as well as Saghir and Lin 

processes. They carved out situations in which a G-chart1 can detect changes in 

We introduce a new class of control charts, the -chart, which is a generaliza-
tion based on a new class of entropy, the cumulative paired -entropy (CPE ), as 
introduced by Klein et al. (2016). The CPE contains many classes of well-known 
entropies such as the cumulative (residual) entropy and the differential entropy. 
We generalize the results of Riaz and Saghir (2007) and Saghir and Lin (2015) as 
follows. First, a class of -charts is introduced that inherits the G-chart as a special 
case. Second, two new control charts are introduced that can be of advantageous 
use as a control chart in situations in which a sample of the process is not drawn 
from a normal population.

This paper is organized as follows: At the beginning, we introduce the G-chart 
by Riaz and Saghir (2007) and Saghir and Lin (2015). Then we introduce the 
new class of -charts.2 Section 3 compares the -charts to the established S- and 
G

Throughout this paper, we analyze methods to monitor the variability of 
a process. Information about location is not the focus of this research. Therefore, 
we assume in the following that any sample mean values lie in their control limits, 
meaning that the process location is under control.

Control limits for the variability of a sample with n

 Lower Control Limit, 
,

2
n  

(2)

 1 The G
 2 Note that we will not provide an analysis with respect to the R-chart, which is based on ranks of 

R-chart is either dominated by one, the S- or the G-chart.
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 Upper Control Limit, 
1 ,

2
n  

(3)

 is unknown, it can be replaced by 
an unbiased estimator ˆ in the case of a normal distribution. The quantiles q  are 

n3.

2.1. G

A G

 
1 1

2
1

n n

in n
 (4)

David (1968) showed, that /2 G  is an unbiased estimator for the true 
underlying process variability. Saghir and Lin (2015) analyzed the performance 
of G-charts under several violations of assumptions as non-normality and shifts 
in the standard deviation of the process.

2.2. 

Klein et al. (2016) introduced a new kind of entropy whose special cases have 
-

mini 1972), Uncertainty theory (c.f. Liu 2015), and Reliability theory (c.f. Ebrahimi 
1996). This new class of entropy, cumulative paired -entropy (CPE , is based 
on an absolute continuous probability distribution function F. For every concave 
function  with (0)  (1)  0, the CPE

 1  (5)

CPE  as 
measures of variability resulting in four -charts:

1. Cumulative paired Leik entropy (CPE , following Leik 1966) is generated by

 1 1
2 2

u min u u u u  (6)

 3 See Riaz and Saghir (2007) for further details on the critical values for S- and G-charts under nor-
mality.
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which results in: 

 2 ,1  (7)

2. Cumulative paired -entropy (CPE , following Havrda, Charvát 1967) is 
generated by:

 
1 1

1
uu u u  (8)

which results in:

 
11 1 11

1
1 1

 (9)

3. Cumulative paired Shannon entropy (CPES, following Burbea, Rao 1982) is 
generated by:

 u u u u  (10)

which results in:

 ln 1 ln 1S  (11)

The CPES is a special case of CPE  for   1.

4. Cumulative paired Gini entropy (CPEG), which is a special case of CPE  for 
  2, results in:

 2 1G  (12)

As described by Klein et al. (2016), G  4CPE . Therefore, G-charts can be 
generalized to -charts or even more general -charts, that contain the G-chart 
as a special case. See Klein et al. (2016) for more information about the esti-
mation of CPE .

We compare these generalizations to the established results in literature in 
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Following Riaz and Saghir (2007) and Saghir and Lin (2015), we evaluate the 

for the control limit, we use a Monte Carlo simulation with 2,000,000 random 
samples of size n 
an overview on the probability distributions used throughout the simulation. The 
distributions were chosen based on their potential relevance for various process 

a standardizing parametrization is used. We choose   5 degrees of freedom for 
t

Density functions of the analyzed probability distributions

Distribution Density function Parameters

Normal
2

22

1
22

  0,   1

t

1
2 2

1
2 1

2

   5

Logistic 2   0,   1

Gamma 11
  0,   1

Laplace
1

2   0, b  1

   1
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Following Saghir and Lin (2015), we use the average run length ( ) as the 
performance criterion for the suitability of the proposed charts in several scenarios. 
It can be interpreted as the average required number of observations from the 
process until an out-of-control situation is detected. The  is a transformation 

 ). Here,  is the prob-
ability of a type II error and 1   is the power of a test. Conclusively, a high 
power translates into a high probability of identifying out-of-control situations. 
We distinguish between 0 (run length when a process is under control) and 

1 (run length when a process is not under control). For a suitable chart, 0 
must be large  – since an alarm would be a wrong decision  – and 1 must be 
small  – to detect out-of-control situations as quickly as possible. The  values 

with 200,000 repetitions.
The reference standard deviation 

is implemented by shifting the reference standard deviation for each distribu-
tion from  to k  with k  0. Furthermore, we change the actual distribution of 
the process, implemented by using one of the other 5 distributions from Table 1 
instead of the Gaussian distribution.

-charts for  2

First, we are interested in analyzing the close surrounding of the special 
case   2. We compared 0 and 1. As it turns out, there is no relevant 
improvement in neither 0 or 1 from using the G-chart4 to any value  

  2, neither if the variance increases while the distribution remains Gaussian 
-

0 (a) and 1 (b) values of  
the -charts (including the G-chart) as ratio with respect to the 0 and 1 
values of the S-charts  – for different values of -
nential distribution.

 4 The G-chart is an -chart with   2.
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Ratios of  of -charts for 1  2 and the  of S: a) 0 for standard 
Gaussian data; b) 1  0.625

We see that Figure 1 shows nearly no difference between the performance of 
-charts and the S-charts for any value of  (1, 2]. This seems to be surprising 

are located in the tails of a distribution. Since those observations are responsible 
for tremendous changes in variability, the detection of out-of-control situations by 

-charts for any value of  is similar. The functional form of the CPE
(u) (1 u) (see formula (5)) for different values of  is displayed in Figure 2. 

As we will see in the following subsection, more advantageous behavior of 
a (u) (1 u) varies considerably, 
as with the Leik-chart (see Figure 2b).

The integrands of: CPE  for  1.01, 2, 3 (a); CPES, CPEG, and CPE  (b)

a)

a)

b)

b)
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Shannon- and Leik-charts

In this subsection we analyze the  of charts that are based on the Leik 
entropy CPE  as well as on the Shannon entropy CPES. As can be seen from Fig-
ure 2, the integrands of the resulting CPE  have substantially different slopes in 
the tail regions. In the following, we take a closer look on how this affects the 

 of the associated -charts. We use the Shannon-chart and the G-chart as rep-
resentatives of the -charts, since the previous subsection showed very similar 
behavior referring different values of .

shifting the standard deviation of a Gaussian distribution. Figure 3 summarizes 
the -values of G-charts in comparison to Shannon- and Leik-charts. All val-
ues are displayed relative to the respective  of the benchmarking S-chart. 
Results show that neither of the new -charts outperforms the S-chart in the 
sense of a higher 0 or a lower 1. However, the 0 of the G-, Leik-, and 

S-chart. All 1

values converge as the multiplicative shift k of the standard deviation increases. 
k  (1, 2]. 

In contrast to the S-chart, the Leik-chart needs up to 20% more observations to 

in this particular scenario.

 ratios of CPES, CPEG, and CPE  for a standard Gaussian distribution 
where the standard deviations are multiplied by the shift-factor k. 

All -values are reported as ratios compared to the -value of the S-chart
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Nonetheless, we assume that there are situations in which the Leik-chart 
outperforms every other control chart. For this purpose, we analyze the 
behavior under several alternative families of distributions, which are summarized 
in Table 1. Figure 4 compares the Shannon-, G-, and Leik-chart at non-normal 
distributions. Again, all  
compared to the  of the S-chart. Three results can be derived by interpreting 
the ratios of 

t-distribution with 
 -

tion. In our simulation, the S-chart can detect such outliers very quickly, since 
an arbitrarily large value has an arbitrarily large effect on S which makes S very 
sensitive to outliers. However, in this scenario, the G-chart, as already discussed 
by Riaz and Saghir (2007), and the Shannon-chart perform similarly to the regu-
lar S-chart. Merely the Leik-chart needs about 5% more observations in order to 
detect an out-of-control process.

The second result is that at symmetric distributions with lighter tails than the 
t(5)-distribution5, all three charts (Shannon-, G-, Leik-chart) require less observa-
tions to detect an out-of-control process than the classical S-chart. Shannon- and 
G-chart perform similar, while both are dominated by the Leik-chart, which 
requires the lowest number of observations.

t, logistic, and Laplace 
distribution  – share one common feature. The larger the shift in variability, the 
more similar are Shannon-, G-, and Leik-charts to each other as well as they are 
to the S-chart. This convergence seems to be accelerated if the tails of the distri-
bution are heavy. 

The third result is that with increasing shift in the standard deviation at non-
symmetric distributions (see Figure 4d), the better the improvement achieved by 
using the Leik-chart compared to any other chart (up to 25% fewer observations 
needed on average to detect an out-of-control process). However, for large shift 
values this improvement seems to vanish as the -curve converges to 1.

-
monly used for modeling waiting time in production processes, see e.g., Qiu (2013). 

-
ily of distributions with a half-bounded domain6

family and as a special case, the gamma distribution.

 5 That is e.g., the logistic or the Laplace distribution.
 6  (0, ).
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a) -ratios for samples from 
t distribution with  5

b) -ratios for samples from 
the standardized logistic distribution

c) -ratios for samples from 
the standardized Laplace distribution

d) -ratios for samples from 
 1

 ratios of the Shannon-, G t (a), the logistic (b), 
-

tribution are multiplied by the shift-factor k
applied distributions (k  1 refers to 0, k  1 to 1). All -values are reported as 

ratios compared to the -value of the S-chart

In some situations, especially when some kind of waiting time is involved 
in a production process, the quantity of interest follows a gamma distribution 
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(c.f. Zhang et al. 2007). The shape parameter  of a gamma distribution regulates 
the hazard rate – one can distinguish between

 1: monotonically decreasing hazard rate, 

 1: monotonically increasing hazard rate. 

We showcase two parametrizations of the gamma distribution from Table 1 
covering both decreasing (  0.5, Figure 5a) as well as increasing (  2, Figure 5b) 
hazard rates.

As we can see in Figure 5, in case of monotonically increasing as well 
as decreasing hazard rates, the Leik-chart outperforms the S-chart by far in 
detecting out-of-control situations. The Leik-chart has an even lower 1 

value than the Shannon- or the G-chart (k
fewer observations to detect an out-of-control situation. All four control charts 
show a similar 0

boundaries (k  1).

a) -ratios for samples from 
the gamma distribution with  0.5

b) -ratios for samples from 
the gamma distribution with  2

 ratios of the Shannon-, G-, and Leik-chart for the gamma distribution with 
shape parameter  0.5 (a) and  2 (b) for different shifts k

This promising result encourages us to apply the new control charts to an 
actual data set from a refrigerator production process.
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In this subsection, we evaluate the S-, Shannon-, G-, and Leik-chart to a data 
set from Wild and Seber (2000), which contains the thickness of paint on refrigera-
tors for a sample of size n
set as training data and for the last 5 shifts (test data) a quality check is performed 
to determine whether or not the process is still under control. Table 2 lists all 

for the gamma and 0.3073 for the Gaussian distribution. Therefore, we use the 
gamma distribution for determining the critical values of the control charts. 

 78.8544 and  0.1102. 
After the training set, the control charts are initialized using simulated UCL and 
LCL based on 1,000,000 samples of size n  5 at a level of 0.5%. Figure 6 lists the 
four resulting processes and the application to the 5 test shifts.

a) S-chart b) G-chart

c) Leik-chart d) Shannon-chart

S-, G
have been used to calibrate the control chart by estimating LCL and UCL. The charts are 
applied to the last 5 test shifts. Horizontal lines denote the UCL, the mean of the process, 

and LCL (top down). The red dashed line indicates an out-of-control situation
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Clearly, all four control charts detect an out-of-control situation in the shifts 
17 and 18, which would in practice result in a termination of the production pro-
cess. To strengthen the results from the Monte Carlo simulations of the previous 
sections, however, more data would be required together with the information 
of whether the process has actually been out-of-control or not.

Our results showed that the broad class of -charts, containing the well-known 
G-chart as a special case for   2 as well as the Shannon-chart as a limiting case 
for   1, does not provide any improvement over the classical Shewhart control 
charts for values of   2. The  of -charts is very similar to the   of the 
G
equally shaped kernel functions of the underlying CPE , which weigh observa-
tions in a similar manner.

However, we discovered that the usage of Leik control charts can be advanta-
geous compared to established Shewhart control charts if the underlying process 

are found to outperform both the classical S-chart and the G-chart if the variability 
of the process is out-of-control. Further research should focus on applying this 
Leik-chart to actual data from production processes following a gamma distri-
bution and investigate the economically advantageous implications of using this 
new -chart compared to using a classical Shewhart control chart.

Furthermore, for processes which follow a distribution with domain  the 
analysis of the performance of a control chart that is based on the cumulative 
residual entropy (as in Wang et al. 2003), could be of interest for further research.
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