
71

Managerial Economics
2019, vol. 20, No. 2, pp. 71–118

https://doi.org/10.7494/manage.2019.20.2.71

Sylvia Endres*

Review of stochastic differential equations 

in statistical arbitrage pairs trading

1. Introduction

Since the seminal studies of Thiele (1880), Bachelier (1900), Einstein (1905) 
and von Smoluchowski (1906), the use of stochastic differential equations in 
science, engineering and economics has expanded rapidly (Bodo et al. 1987, 
Sharp 1990). More recently, in statistical arbitrage pairs trading, interest in ad-
vanced time-series modeling with stochastic differential equations has grown 
strongly, mainly due to increased activity on financial markets, the steady growth 
of computing power, and immense amounts of data at higher frequencies. The 
statistical arbitrage pairs trading strategy was introduced by Gatev et al. (1999) 
and Gatev et al. (2006) and consists of two time periods  – formation and trading. 
In the formation period, pairs of strongly related stocks are formed by methods 
of time-series analysis. In the trading period, these pairs are monitored to detect 
any potential divergence in their price movements. If sufficiently large divergence 
occurs, the undervalued asset is bought and the overvalued asset is sold short, 
betting on a subsequent convergence of the two assets.

By construction, the pairs trading strategy typically relies on the mean-revert-
ing tendency of spreads1 and its reliable quantification. For this purpose, stochastic 
differential equations are utilized to model spread characteristics and explain 
their potential mean-reverting behavior. Specifically, stochastic spread modeling 
focuses on the “two main issues in implementing a pairs trading strategy” (Focardi 
et al. 2016): In the formation period, pairs are selected based on estimated model 
parameters, e.g., strength of mean-reversion, and as such, matching of pairs is 

 * University of Erlangen–Nürnberg, Department of Statistics and Econometrics, Lange Gasse 20, 
90403 Nürnberg, Germany, e-mail: sylvia.endres@fau.de.

 1 Methods to measure the spread include the difference of (log-)prices and the difference of (cumu-
lated) (log-)returns of two stocks. Only few studies use other measures of relative mispricing, e.g., 
the price ratio of two assets.



72

Sylvia Endres

clearly improved, rendering model-free metrics like the Euclidean distance un-
necessary. In the trading period, investment decisions are determined based on 
predictions obtained from the stochastic spread model, replacing traditional rules 
of thumb by optimized signals.

The majority of studies focuses on the trading period  – in other words, it is 
assumed that pairs have already been selected and the goal is to derive optimal 
trading decisions. Hereby, two approaches are distinguished: In the first approach, 
optimized trading signals are derived using analytic frameworks with closed-form 
solutions. The second approach applies dynamic programming techniques to solve 
portfolio optimization problems (see Krauss 2017). The present survey follows 
this structure and hence organizes the works along two dimensions, i.e., (i) the 
stochastic model used to explain the spread and (ii) the trading optimization ap-
proach (analytic vs. dynamic programming) based on the stochastic spread model.

In total, the literature on statistical arbitrage pairs trading with stochastic 
differential equations consists of more than 80 studies. Across the wide range 
of stochastic models and their underlying mathematics as well as the diversity 
of statistical arbitrage frameworks, there remains lack of a holistic look at the 
research field from all the different angles. As of today, no academic work has yet 
consolidated and organized the extensive available knowledge.

In the present paper, we fill this void by surveying the multitude of available 
references. Hereby, our contribution to research is threefold. First, we provide 
a comprehensive literature review that systematically categorizes the large body of 
work into five main strands of stochastic spread models: the Ornstein–Uhlenbeck 
model, extended Ornstein–Uhlenbeck models, advanced mean-reverting diffusion 
models, diffusion models with a non-stationary component, and other models. 
Table 1 provides an overview of these models, their corresponding stochastic 
differential equations, and representative studies per category.

For each model, the approaches to derive optimized trading decisions are 
discussed thoroughly in consistent terminology and notation in sections 2 –6. 
The corresponding tables 2  – 6 summarize the main aspects per section. Second, 
we discuss the major papers in detail and assess the relative strengths and weak-
nesses according to model and approach. Hereby, we provide valuable insights 
into the current state of research with its key fields and main limitations. Third, 
we reveal directions for further research and promising future studies within 
each category.

The remainder of this study is structured as follows. Section 2 covers the 
Ornstein–Uhlenbeck model, section 3 extended Ornstein–Uhlenbeck models, 
section 4 advanced mean- reverting diffusion models. Diffusion models with 
a non-stationary component are reviewed in section 5 and other models in sec-
tion 6. Section 7 concludes and summarizes the main results.
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2. Ornstein–Uhlenbeck model

The Ornstein–Uhlenbeck (OU) model in pairs trading was proposed by El-
liott et al. (2005). The authors laid the foundation2 for prediction and decision 
making based on this model (Zeng and Lee 2014). Nowadays, the majority of 
pairs trading studies use the OU model to explain the spread dynamics. For stock 
prices S1(t) and S2(t), the spread Xt is typically calculated by Xt  S1(t) − S2(t) or  
Xt  ln S1(t) − ln S2(t)

3 and follows

 dXt  (  − Xt)dt + dWt (1)

with mean-reversion level (i.e., long-term mean, equilibrium level) , mean-
reversion rate or speed , volatility , and Brownian motion {Wt}t 0. The mean-
reversion level  is a key element of the pairs trading strategy  – the spread reverts 
to this level at rate  and strategies usually take advantage of this behavior. The 
half-life h measures the time taken by the process to move halfway back to its 
equilibrium after divergence and is calculated by

 h =
ln2

q
 (2)

The conditional distribution of the OU process is

 
( | ) ( ) , ( )X X x x e et

t t
0

2
2

2
1= + − −









− −m m

s

q
q q

and in the limit

 X N m
s

q
,

2

2









  (3)

Transforming the OU process (1) into a dimensionless system via  
Zt  (Xt − ) 2 /  (see, e.g., Zeng and Lee 2014) yields the dimensionless 
OU process

 dZt  −Ztdt + 2dWt (4)

 2 As of 2018-09-16, there are more than 285 citations on Google Scholar for Elliott et al. (2005).
 3 According to Do et al. (2006), the spread should be defined by Xt  ln(S1(t)) ln(S2(t)) to remove 

the implicitly assumed restriction of “return parity”. Assume that, in one unit of time, stocks 1 
and 2 both return r (r  ). Then, ln(S1(t + 1)) − ln(S2(t + 1))  (ln(S1(t))+ r) − (ln(S2(t))+ r)  

 ln(S1(t)) − ln(S2(t)).
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with long-term mean zero. The first-passage time density in the dimensionless 
system is explicitly known (see, e.g., Göncü and Akyildirim 2016a)

 f t
c e

e

c e

e
tc

t

t

t

t0 2 3 2

2 2

2

2

1 2 1
0, /

( )
( )

exp
( )

,=
−

−
−









 >

−

−

−

−p
 (5)

Hereby, f0,c is the density of the first-passage time

 0,c  inf{t  0, Zt  0|Z0  c}

which is the time until Zt reaches its mean-reversion level 0 when starting in c. In 
the original OU process (1), the level c corresponds to  + c( / 2 ) (see Göncü 
and Akyildirim 2016a). 

Pairs trading decisions from the calibrated OU model can be optimized in the 
formation and trading period. In the formation period, the OU model parameters 
can be used for pairs selection. Favorable pairs are, e.g., (i) pairs with high mean-
reversion speed  or low half-life h (see equation 2) because they revert back to 
their equilibrium level fast4, (ii) pairs with high volatility  or high equilibrium 
standard deviation eq (see equation 3) because they create many trading oppor-
tunities. In the trading period, entry and exit decisions are optimized based on 
the calibrated OU model. Hereby, the basis is a rule of thumb (‘two- sigma rule’) 
explained by Gatev et al. (2006)  – pairs are opened when the spread deviates 
by more than two historical standard deviations st from its moving average t,  
i.e., the spread crosses t 2st, and closed when it reverts back to t. The studies 
surveyed in this subsection modify or replace this rule of thumb by advanced sig-
nals obtained from the OU model. We discuss the three approaches of literature 
to optimize trading decisions: analytic (subsection 2.1), dynamic programming 
(subsection 2.2), and other (subsection 2.3). Table 2 provides an overview of the 
relevant works which are discussed in the following part.

Table 2

Ornstein–Uhlenbeck model

Approach Study

2.1. Analytic approach

2.1.1. Baseline approach Elliott et al. (2005)

Generalizations of the baseline 
approach

Do et al. (2006), Triantafyllopoulos and Montana 
(2011) 

Further analytic results Rampertshammer (2007)

 4 High mean-reversion speed or low half-life are equivalent metrics for pairs selection.
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Approach Study

Applications of the baseline 
approach

Baronyan et al. (2010), Dunis et al. (2010), 
Bogomolov (2011), Kim (2011), Nobrega and 
Oliveira (2013), Diamond (2014), Fanelli and 
Lesca (2014), Nobrega and Oliveira (2014), Kang 
and Leung (2017), Yang et al. (2017), Blázquez 
and Román (2018), Psaradellis et al. (2018)

Further approaches
Kanamura et al. (2010), Bogomolov (2013), 
Temnov (2015)

2.1.2. Optimal trading thresholds Bertram (2010b)

Empirical applications of Bertram 
(2010b)

Cummins (2010), Bucca and Cummins (2011), 
Cummins and Bucca (2012)

Further enhancements of Bertram 
(2010b)

Zeng and Lee (2014), Göncü and Akyildirim 
(2016b), Baviera and Baldi (2018)

2.2. Dynamic programming

2.2.1. Optimal investment 
allocation

Boguslavsky and Boguslavskaya (2004), Jurek and 
Yang (2007), Mudchanatongsuk et al. (2008)

Extension for time-dependency Charalambous et al. (2015)

Continuous-time cointegration
Liu and Timmermann (2013), Tourin and Yan 
(2013)

Extending continuous-time 
cointegration

Figuerola-Ferretti et al. (2015), Angoshtari 
(2016), Li and Tourin (2016), Figuerola-Ferretti 
et al. (2017)

2.2.2. Optimal timing of trades Zhang and Zhang (2008)

Incorporating stop-loss limits
Ekström et al. (2011), Song and Zhang (2013), 
Lindberg (2014), Kuo et al. (2015), Leung and Li 
(2015), Li (2015), Leung and Li (2016)

Further enhancements on optimal 
timing: Finite horizon, multiple 
regimes, cointegration, model 
uncertainty

Dourban and Yedidsion (2015), Lei and Xu 
(2015), Suzuki (2016), Kitapbayev and Leung 
(2017), Yoshikawa (2017), Kitapbayev and Leung 
(2018), Suzuki (2018)

2.3. Other approaches

Principal component analysis
Avellaneda and Lee (2010), Yeo and Papanicolaou 
(2017), Burks et al. (2018) 

Relativistic statistical arbitrage Wissner-Gross and Freer (2010)

Penalized likelihood approach Zhang et al. (2018)

Table 2 cont.
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2.1. Analytic approach

The key idea of the analytic approach is to obtain optimized trading thresh-
olds using closed form solutions.

2.1.1. Baseline approach

Elliott et al. (2005) were the first authors to apply the OU model to explain 
the spread Xt  S1(t) −S2(t). A pairs trade is opened when the dimensionless OU 
process Zt (see equation 4) crosses a threshold c  0, i.e., reaches an extreme 
value. To determine the optimal exit timing, the authors suggest to use the 
first-passage time 0,c, since the corresponding probability density function f0,c is 
explicitly known. The trade is exited at a fixed time t̃ , where f0,c(t) has a maxi-
mum value and thus Zt reaches its long-term mean 0 with greatest probability. 
For the original OU process (see equation 1), this means that a trade is entered 
when Xt crosses  ± c( / 2 ) and exited T t= 1

q  times later  – at the most likely 
time at which Xt reaches its mean-reversion level . However, the threshold c is 
not further specified by the authors. Further, Cummins and Bucca (2012) point 
out that the lengths of the trade cycles are uncertain and not directly considered 
in the strategy.

Do et al. (2006) generalize the approach of Elliott et al. (2005) and model the 
spread Xt as the difference of returns instead of prices. They additionally include 
a loading matrix  and an exogenous vector Ut for modeling the equilibrium. The 
modeling framework is similar to Elliott et al. (2005) and the dynamics of Xt are 
governed by an OU process. A pairs trade is opened when the cumulated spread 
crosses a certain threshold and closed when it reaches the long run level of the 
spread. However, no explicit threshold for market entry is given. Triantafyllopou-
los and Montana (2011) extend the state-space framework of Elliott et al. (2005) 
for time-dependent model parameters, thus gaining flexibility and being able to 
quickly adapt to changes in the data. Further analytic trading frameworks based 
on the OU model are discussed by Rampertshammer (2007).

In subsequent years, various studies optimize the strategy with the calibrated 
OU model based on the framework of Elliott et al. (2005). In the formation pe-
riod, Dunis et al. (2010), Kim (2011) and Blázquez and Román (2018) select pairs 
based on estimated OU model parameters, e.g., mean-reversion speed , instead 
of simple distance metrics. In the trading period, the traditional ‘two-sigma rule’ 
by Gatev et al. (2006) is optimized by using the OU model parameters  and  

instead of moving average t and historical standard deviation st. Baronyan et al. 
(2010), Bogomolov (2011), Diamond (2014), and Fanelli and Lesca (2014) open 
positions when the spread reaches an exteme value   k1  and exit them when 
the spread reverts back to   k2 , choosing various values for k1 and k2. Other 
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trading rules based on OU model parameters are constructed in Nobrega and 
Oliveira (2013), Nobrega and Oliveira (2014), Kang and Leung (2017), Yang et al. 
(2017), and Psaradellis et al. (2018). Apparently, there exist various different ap-
proaches for trading, which raise the question whether there is an optimal and 
completely model-driven rule.

Further analytic approaches are provided by Kanamura et al. (2010), Bogomo-
lov (2013), and Temnov (2015). Kanamura et al. (2010) introduce a profit model 
for spread trading, taking advantage of the explicit first-passage time density of 
the OU process. Bogomolov (2013) proposes a nonparametric pairs trading ap-
proach and demonstrates its theoretical profitability for the OU process. Temnov 
(2015) develops a trading strategy based on an explicit formula for the running 
maximum of an OU process stopped at its maximum drawdown.

2.1.2. Focusing on the role of time  – optimal trading thresholds

Analytic formulas for optimal trading are finally provided by Bertram (2010b). 
The spread is modeled by the OU process (1) with mean-reversion level   05.  
A trade is entered at Xt  a and exited at Xt  m for a < m. A trade cycle is com-
pleted when the spread has reverted back to the starting value a. The time the 
spread needs to undergo this cycle is the total trade length  m,a + a,m with 
mean E[ ], variance Var[ ], and m,a  inf{t  0|Xt  m, X0  a}. An optimal strat-
egy is derived by maximizing two different objective functions  – the expected 
return per unit of time

 m
t

( , , )
( , , )

[ ]
a m c

r a m c

E
=  (6)

and the expected Sharpe ratio per unit of time:

 S a m c r

a m c
r

E

E
f

f

( , , , )
( , , )

[ ]
[ ]

=
−m

t

t
 (7)

for return r(a, m, c)  m − a − c, transaction costs c, risk-free rate rf , and return 
variance

2(a,m, c)  r(a,m, c)2 Var[1/ ]  r(a,m, c)2 Var[ ]/E[ ]3 (8)

The distribution of the first-passage time is known (see equation 5) and thus 
E[ ] and Var[ ] can be calculated explicitly. 

 5 Following Cummins and Bucca (2012), the zero-mean assumption is no issue in practice since the 
analytic results can be translated easily to a non-zero mean.
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As such, analytic formulas for (a, m, c) and S(a, m, c, rf ) can be derived

 m
q

p
q

s

q

s

( , , )
( )

a m c
m a c

m a
=

− −








 −



















Erfi Erfi

 (9)

and S(a, m, c, rf ) similarly. Erfi(x) denotes the imaginary error function. The 
optimal analytic trading thresholds a and m are received by maximizing these 
functions via differentiation. For the case of maximizing the expected return per 
unit of time, the following entry bound a is obtained

 

a
c c

c c c c

c c

= − −
+ − +( )

−

+

4 4 24 4 3 36

24

2

3 3 2 2 4 5 2 2 4 4
1 3

3 3 2 2

q

q q s q s q s

q q s

/

−− +( )4 3 36

4

4 5 2 2 4 4
1 3

c cq s q s

q

/

The optimal trading bounds are found to be symmetric around the mean-
reversion level of the process, i.e., m  −a. The approach by Bertram (2010b) has 
three advantages: First, the trading thresholds are optimal and model-driven  – 
classic rules of thumb are rendered unnecessary. Second, closed-form solutions 
allow for analytic investigations and computationally efficient frameworks even 
in the high-frequency context (see Krauss 2017). Third, the approach allows 
for consistent cross-comparison, i.e., different strategies can be compared since 
their deterministic returns are all normalized by the expected trade cycle time 
(see Cummins and Bucca 2012). For future research, Bertram (2010b) suggests 
to apply the method to non-Gaussian processes, e.g., processes driven by Lévy 
noise, although it is not clear whether comparable analytic results exist. Bucca 
and Cummins (2011) suggest to consider regime shifts in the long-run mean level 
of the spread series. The surveyed studies in subsections 3.2 and 3.3 focus on the 
latter two issues. Zeng and Lee (2014) criticize that fixed trading thresholds are not 
applicable in the long-run and propose to investigate time-dependent thresholds.

Empirical applications of the approach by Bertram (2010b) are found in 
Cummins (2010), Bucca and Cummins (2011), and Cummins and Bucca (2012). 
Cummins (2010) performs a comprehensive analysis on Irish stock exchange data. 
Bucca and Cummins (2011) conduct a model specification analysis on Brent and 
TD3 data. Cummins and Bucca (2012) provide a large application on oil based 
markets and control for data snooping bias.

Further enhancements of the approach by Bertram (2010b) are provided by 
Zeng and Lee (2014), Göncü and Akyildirim (2016b), and Baviera and Baldi (2018).  
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Zeng and Lee (2014) derive optimal analytic trading thresholds for an OU process, 
considering first-passage times over a two-sided symmetric boundary. Göncü and 
Akyildirim (2016b) derive optimal trading bounds for another objective function 
than Bertram (2010b)  – the probability of successful termination of the strategy. 
Baviera and Baldi (2018) extend the optimal strategy for two key elements of 
high-frequency trading  – stop-loss and leverage.

2.2. Dynamic programming

Based on the OU model to explain the spread dynamics, another stream 
of literature focuses on dynamic programming techniques. The key idea of the 
dynamic programming approach is to solve an arbitrageur’s dynamic portfolio 
optimization problem based on stochastic control theory. An investor with given 
preference specification6 can either trade a risky arbitrage opportunity Xt or allocate 
capital to a risk-free asset Mt. The arbitrage opportunity, i.e., the mean-reverting 
spread Xt, is modeled by a stochastic differential equation.

2.2.1. Optimal investment allocation

A different angle to look at pairs trading is the problem of determining op-
timal portfolio holdings over time. The most cited paper7 in this domain is Mud-
chanatongsuk et al. (2008). The authors assume that an investor either allocates 
capital to a risk-free asset Mt with rate r or to a stock pair with prices S1(t) and 
S2(t) and spread Xt, governed by the OU process. The portfolio weights of stocks 
1 and 2 are denoted by h1(t) and h2(t) and it is required that h1(t)  −h2(t), i.e., 
the pairs trading portfolio is dollar-neutral. A negative weight represents a short 
position in the respective stock. The portfolio value Vt follows

 dV V h t
d S t

S t
h t

d S t

S t

dM

M
t t

t

t

= + +

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The objective is to maximize the expected utility from this portfolio at the 
final time T. For an investor with power utility, the optimization problem has the 
following form:

 sup
( )h t

TE V
1

1

g
g









 6 Different utility functions for an investor with risk aversion  are considered: Power utility u(x)  1 x ,  
exponential utility u(x)  e− x, logarithmic utility u(x)  ln(x), constant relative risk aversion (CRRA) 
utility, constant absolute risk aversion (CARA) utility, and Epstein–Zin utility.

 7 As of 2018-09-16, there are 85 citations on Google Scholar for Mudchanatongsuk et al. (2008).
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subject to: V(0)  v0, X(0)  x0

 dXt  (  − Xt)dt + dWt (10)

 dV V h t X r dt d Wt t t t= − + + +
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with volatility  of the dynamics of stock 2 and correlation . The stochastic con-
trol problem (10) is solved using dynamic programming techniques  – the optimal 
weight h*

1(t) is obtained via the Hamilton-Jacobi-Bellman (HJB) equations as
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with functions (t) and (t). The work of Mudchanatongsuk et al. (2008) lays 
the foundation for pairs trading based on stochastic control (see Lintilhac and 
Tourin 2017). The major contribution are optimal closed-form solutions for the 
portfolio holdings. However, there are two downsides associated with this ap-
proach, which particularly impact practical applications. First, transaction costs 
are not considered in the study. Second, the optimal strategy requires infinitesi-
mal rebalance (see Suzuki 2016), i.e., positions have to be adjusted constantly 
according to equation (11). Jurek and Yang (2007) consider a similar setting as 
Mudchanatongsuk et al. (2008) and focus on an investor with constant relative 
risk aversion (CRRA) and Epstein–Zin utility. For CRRA utility and   1, they derive 
the optimal portfolio allocation by

 h V x
x rx

Vt t
*( , )

( )
= −

−
−








q m

s s2 2
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Boguslavsky and Boguslavskaya (2004) solve the optimal investment problem 
for an arbitrageur with power utility and a single risky asset that follows an OU 
process, i.e., the risk-free rate r is assumed to be zero. Charalambous et al. (2015) 
provide an extension of Mudchanatongsuk et al. (2008) for time-dependent model 
parameters.

A common characteristic of the aforementioned studies is that they assume 
dollar-neutrality, i.e., the investor goes long one stock and short the other in equal 
dollar amounts. In recent years, some studies have dropped the dollar-neutrality 
assumption of classic pairs trading. By modeling two cointegrated assets in a contin-
uous-time setting, the amounts invested in each position of the pairs trade are de-
termined separately. The most cited paper8 in this domain is Tourin and Yan (2013). 

 8 As of 2018-09-16, there are more than 40 citations on Google Scholar for Tourin and Yan (2013).
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The authors model the prices S1(t) and S2(t) of two cointegrated stocks for 
t  [0, T] by

 d S t z d dW tt tln ( ) ( )1 1
1
2

1 12
= − +


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with co-integrating vector zt:

 zt   + ln S1(t) +  ln S2(t)

They show that zt follows the OU process
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investor’s portfolio Vs consists of stocks 1 and 2 with weights h1(s) and h2(s) for  
s  [t, T ] and a risk-free asset, for which the interest rate is set to 0. The optimal 
strategy is specified by the following stochastic control problem

 sup [ ( )]
( , )h h

TE u V
1 2

 (14)

The authors use exponential utility u with risk aversion coefficient   0 since 
their ansatz does not work for power utility. Via the HJB equations, the optimal 
solutions (h*

1, h
*
2) for problem (14) are derived as:
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As such, the optimal holdings at any time t depend on the stock prices and 
the wealth at that time. Subsequently, the authors present an extension that in-
corporates correlations between the two stocks and derive the optimal control 
pair. The simplicity of the aforementioned formulas allows for a straightforward 
implementation of the optimal strategy, while the limitations of this approach 
are pointed out by Zhengqin (2014). First, the analytic solutions only hold if the 
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risk-free rate of return is zero. Second, the ansatz is not applicable for other types 
of utility functions. Third, in real world markets where transaction costs exist, it is 
not possible to adjust the stock positions constantly to take the optimal holdings. 
Further investigation of the optimal investment problem for cointegrated assets 
under power utility is found in Liu and Timmermann (2013).

Li and Tourin (2016) extend the model by Tourin and Yan (2013) for time-
varying volatility, replacing the constant volatility coefficients in equation (13) 
by 1(t, x)  1e

1x and 2(t, x)  2e
2x. Further, they use power utility instead of 

exponential utility. However for this framework, the authors are unable to derive 
a fully explicit solution for the stochastic control problem. Figuerola–Ferretti 
et al. (2015) and Figuerola–Ferretti et al. (2017) extend upon Liu and Timmer-
mann (2013), maximizing the portfolio value without explicit specification of 
the investor’s preferences in an utility function. Instead, they identify a replicat-
ing portfolio based on option valuation and connect it to the optimal strategy. 
Angoshtari (2016) rests upon the work of Liu and Timmermann (2013), deriving 
a theoretical justification for the practice of market-neutral pairs trading based 
on two cointegrated assets.

2.2.2. Optimal timing of trades

Besides the problem of optimal investment allocation, another stream of 
studies places focus on the strategy’s optimal timing, determined with dynamic 
programming techniques. The baseline approach by Zhang and Zhang (2008) 
aims at maximizing a discounted reward function by sequentially buying and 
selling a mean-reverting asset Xt  ln St following the OU process. A position is 
bought at 1, sold at 1, bought again at 2, etc., leading to the following sequence 
of stopping times:

 0  1  1  2  2  ... . (15)

If the initial net positions is flat (i  0), the decision sequence is  

0  ( 1, 1, 2, 2, ...), for an initial long position (i  1), it is 1  ( 1, 2, 2, 3, ...).  
For discount factor   0 and slippage 0 < K < 1, the authors maximize the dis-
counted reward function

 V x J xi i i

i

( ) sup ( , )=
L

L  (16)

for

 J x E e S K e S Kn
n

n
n

n

0 0
1

1 1( , ) ( ) ( )L = − − + 












− −

=

∞

∑ rs
s

rt
t  (17)



84

Sylvia Endres

and J1(x, 1) similarly. The authors show that a threshold pair (x1, x2), obtained 
by solving two quasi-algebraic equations, leads to the optimal stopping times. 
The low threshold corresponds to the buy point, the high threshold to the sell 
point. Zhang and Zhang (2008) lay the foundation for optimal timing strategies 
based on stochastic control, allowing infinitesimal sequential buying and selling 
subject to slippage cost. However, buying and selling of positions at exactly the 
same time (see equation 15) is not possible in real world markets. Moreover, the 
authors only allow for two regimes, i.e., buy and sell, and the approach could be 
extended for a third regime, i.e., short the position (see Ngo and Pham 2016).

Integration of stop-loss thresholds into the optimal timing strategy can be 
found in various studies, i.e., Ekström et al. (2011), Song and Zhang (2013), 
Lindberg (2014), Kuo et al. (2015), Leung and Li (2015), Li (2015), and Leung 
and Li (2016).

In recent years, some studies present further enhancements to optimal tim-
ing strategies. Dourban and Yedidsion (2015), Kitapbayev and Leung (2017) and 
Kitapbayev and Leung (2018) study optimal stopping problems over finite horizons. 
However, they are not able to derive closed-form solutions. Suzuki (2016) and 
Suzuki (2018) focus on optimal switching over multiple regimes: no holding of 
stocks, long in the first stock and short in the second, and vice-versa. Lei and Xu 
(2015) study the optimal timing problem for two co-integrated assets whose co-
integrating vector follows the OU process. Yoshikawa (2017) incorporate model 
uncertainty into the optimal boundary framework with the use of relative entropy.

2.3. Other approaches

This subsection summarizes other approaches based on the OU model with 
limited relation to the aforementioned references, covering principal component 
analysis, relativistic statistical arbitrage, and the penalized likelihood approach.

Principal component analysis. Avellaneda and Lee (2010) model the spread Xt, 
defined by

 X
S t

S

S t

S
tt = − −ln

( )

( )
ln

( )

( )
1

1

2

20 0
b a  

as an OU process. Based on this model, they generate trading signals for mean-
reverting portfolios with the aid of Principal Components Analysis (PCA) and 
exchange-traded funds. Motivated by this study, Yeo and Papanicolaou (2017) 
analyze the risk due to mis-estimation of mean-reversion based on Principal Com-
ponents. Burks et al. (2018) use the framework of Avellaneda and Lee (2010) and 
analyze how systemic illiquidity affects mean-reverting trading strategies.
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Relativistic statistical arbitrage. Wissner-Gross and Freer (2010) describe the 
cointegrating linear combination between two correlated assets by the OU process 
and develop a relativistic generalization of statistical arbitrage trading strategies.

Penalized likelihood approach. Zhang et al. (2018) construct mean-reverting 
portfolios that follow an OU process via penalized likelihood estimation. Simul-
taneously, portfolios with desirable characteristics, i.e., high mean-reversion and 
low variance, are formed. The nonconvex optimization problem is solved by an 
algorithm based on partial minimization. Interestingly, the approach allows si-
multaneous portfolio selection and OU model calibration in one step. However, 
the study lacks specific trading rules.

Despite the obvious advantages of the OU model  – simplicity, analytic trac-
tability and the ability to explain the important mean-reverting property  – it 
has several deficiencies and is not able to completely describe the reality of the 
spread process (see, e.g., Avonleghi and Davison 2017). The first downside is the 
constant volatility assumption. According to Pilipovic (2007) and Avonleghi and 
Davison (2017), eventful market news sometimes influence prices strongly and 
lead to increased volatility. The second downside is the Gaussian nature of the 
OU process. According to various studies (see, e.g., Bertram 2010b), financial data 
displays non-Gaussian behavior. The third downside is the constant equilibrium 
level of the OU process. In practice, a stochastic or at least time-dependent mean 
level is more realistic (see, e.g., Liu et al. 2017). Some of these disadvantages 
are compensated by extensions of the classic OU process, i.e., multivariate, Lévy 
driven, and regime-switching OU models.

3. Extended Ornstein–Uhlenbeck models

In recent years, extended Ornstein–Uhlenbeck models have been used to 
account for stylized facts of financial return series, e.g., correlations, fat tails, and 
regime-switches. The relevant works are summarized in Table 3.

3.1. Multivariate Ornstein–Uhlenbeck model

The assumption that there exists only one mean-reverting asset is very 
restrictive since a robust spread construction methodology could be used for 
various related spreads (see Jurek and Yang 2007). Combining multiple assets 
assures greater diversification (Jurek and Yang 2007, Kim et al. 2008) and allows 
to exploit co-moving patterns (Liu et al. 2017) and common interactions (Endres 
and Stübinger 2019b) between spreads. In this respect, multivariate OU models 
are used to construct portfolios of multiple correlated spreads. We consider this 
framework under the multivariate pairs trading umbrella.
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Table 3

Extended Ornstein–Uhlenbeck models

Model Study

3.1. Multivariate Ornstein–Uhlenbeck model

3.1.1. Analytic approach

Optimal trading thresholds: Decisions 
based on first-passage times

Rampertshammer (2007)

3.1.2. Dynamic programming

Optimal investment allocation: Optimal 
portfolio holdings, continuous-time 
cointegration, enhancements for time-
consistency and robustness

Kim et al. (2008), Chiu and Wong (2011), 
Chiu and Wong (2015), Lintilhac and 
Tourin (2017), Yamamoto and Hibiki 
(2017), Chiu and Wong (2018)

3.2. Lévy driven Ornstein–Uhlenbeck model

3.2.1. Analytic approach

Model-driven decisions: Optimizing for-
mation and trading period

Stübinger and Endres (2018)

Optimal trading thresholds: Decisions 
based on first-passage time results

Göncü and Akyildirim (2016a), Endres 
and Stübinger (2019b)

3.2.2. Dynamic programming

Optimal timing of trades: Optimal liquida-
tion, stop-loss thresholds

Larsson et al. (2013)

3.3. Regime-switching Ornstein–Uhlenbeck model

3.3.1. Analytic approach

Optimal trading thresholds: Maximum 
expected return per unit of time

Bai and Wu (2018)

3.3.2. Dynamic programming

Optimal investment allocation: Optimal 
weights, logarithmic utility

Altay et al. (2017)

3.3.3. Other approaches

Model-based trading rules: Two-state 
model, different trading strategies

Yang et al. (2016)

Regime classification algorithm: Flexible 
number of regimes

Endres and Stübinger (2019a)
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The multivariate spread Xt  (X1, ..., XN ) consists of N correlated spreads 
and follows

 dXt  A(B − Xt)dt + dWt (18)

with A  N×N, B  N , vector {Wt}t 0 of independent univariate standard Brown-
ian motions, and positive definite covariance matrix
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Table 3 provides an overview of the relevant works applying a multivariate 
OU model to construct portfolios of multiple correlated spreads. As in the previ-
ous section, we first discuss the analytic approach before dynamic programming 
techniques are presented.

3.1.1. Optimal trading thresholds  – analytic approach

Rampertshammer (2007) provides analytic results on the OU model and cor-
responding first-passage times in a multivariate framework. The author models 
the spreads by equation (18) and chooses B  0, so the process reverts around 09. 
Trades are opened when spreads diverge sufficiently large from their historical 
equilibrium, i.e., cross thresholds a or m, a < m, and closed when their equilib-
rium is re-established, i.e., at time  inf{t  0|Xt  0}. To determine the optimal 
thresholds a and m, a first-passage time problem needs to be solved. However, the 
author points out that it is not possible to solve the problem for the multivariate 
process analytically and suggests to use numerical methods. The only way would 
be to assume independence between the different spreads, but then the problem 
reduces to the modeling of separate univariate OU processes. Based on the results 
of Rampertshammer (2007), research should further investigate the problem of 
determining explicit optimal trading thresholds in the multivariate framework. 
Moreover, the extent of correlations among spreads in real world data should be 
analyzed to identify the practical relevance of multivariate modeling compared 
to the much simpler univariate approach.

3.1.2. Optimal investment allocation  – dynamic programming

Kim et al. (2008) consider a dynamic trading strategy that allocates capital over 
a portfolio Vt of multiple correlated spreads Xt  (X1, ..., XN ) and a risk-free asset. 

 9 The zero-mean assumption is no issue since the results could also be translated to a non-zero mean.
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The number of units of the spreads at time t is denoted by h(t)  (h1(t), ..., hN (t)).  
Assuming Xt follows the multivariate OU model (18), the problem of determin-
ing optimal portfolio holdings over a finite horizon for CRRA and CARA utilities 
is investigated:

 sup ( ) ( ) , ( )
h

T t tE u V X t x V t v= =   (19)

The authors show that problem (19) can be expressed in terms of ordinary 
differential equations that need to be solved numerically. Kim et al. (2008) pro-
vide the first study investigating the stochastic control problem in a multivariate 
framework. They contribute to existing literature by providing computationally 
tractable solutions for the optimal portfolio holdings. However, transaction costs 
are not included in their problem formulation. For futher research, Kim et al. 
(2008) raise an interesting question  – it should be evaluated whether the benefit 
from diversification across various spreads compensates losses due to unfavorable 
shocks that destabilize complete multivariate portfolios. Further investigation of 
optimal pairs trading with multiple pairs based on a mathematical programming 
approach can be found in Yamamoto and Hibiki (2017).

Chiu and Wong (2011) focus on optimal multivariate investment allocation 
over cointegrated assets, providing the first theoretical work in that context. They 
consider one risk-free asset and n stocks, from which N (1  N  n) cointegrating 
vectors zt  {z1,t, ..., zN,t} are constructed:

 z t c S j Nj t j j ij i t

i
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where Si,t is the price of asset i at time t for i  1, ..., n. The cointegrating vectors 
zt follow the multivariate OU process of equation (18). The optimal portfolio 
weights are determined by solving the following problem:
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 (20)

for portfolio weights h, terminal wealth VT, and expected final wealth vT. The au-
thors provide closed-form solutions of problem (20). The approach by Chiu and 
Wong (2011) generalizes classic pairs trading in two respects. First, the cointegrat-
ing vector consists of n risky assets instead of two. Second, the dollar-neutrality 
assumption, i.e., the assumption that the investor trades equal amounts in the 
long and short positions, is dropped since the coefficients cij are determined 
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separately for each stock. Further research should provide an empirical appli-
cation with multiple spreads based on the multivariate theoretical framework. 
Lintilhac and Tourin (2017) consider a similar framework as Chiu and Wong 
(2011). Main difference lies in the objective function: Instead of minimizing the 
variance of terminal wealth as in (20), they maximize the expected utility from 
terminal wealth for an investor with exponential utility. Analytic results for the 
optimal portfolio weights are provided.

Chiu and Wong (2015) expand upon Chiu and Wong (2011) and investigate 
time-consistent portfolio selection with cointegration, providing an optimal time-
consistent asset allocation policy. Chiu and Wong (2018) study robust dynamic 
pairs trading with cointegration subject to parameter estimation errors.

To summarize the subsection on multivariate OU models, it should be pointed 
out that literature in this context is sparse due to analytic tractability issues (see 
Jurek and Yang 2007)10. Given the high practical relevance of multivariate model-
ing (see Meucci 2009), future research should aim at providing further analytic 
results in that context.

3.2. Lévy driven Ornstein–Uhlenbeck model

The normality assumption of the classic OU process is an obvious deficit since 
stock prices and returns exhibit fat tails and jumps (see, e.g., Cont 2001, Bertram 
2009, Göncü and Akyildirim 2016a, Stübinger and Endres 2018). Replacing the 
Brownian motion {Wt}t 0 by a Lévy-process {Lt}t 0 leads a more flexible process:

 dXt  (  − Xt)dt + dLt. (21)

The model (21) includes as special cases (i) the classic OU process driven by 
Brownian motion, and (ii) a jump-diffusion model, in case the Lévy process {Lt}t 0  
consists of Brownian diffusion and jumps caused by a Poisson process {Nt}t 0 
with intensity   0. Different variants of jump-diffusion models are applied in 
literature, e.g.,

 dXt  ( (t) − Xt)dt + dWt + ln JtdNt (22)

 10 There are some studies (see, e.g., D’Aspremont 2011 and Cartea and Jaimungal 2016) that construct 
one mean-reverting portfolio Pt consisting of multiple stocks S1, ..., Sn. The mispricing in this case 

is of the form P x S t
t i i

i

n

=
=∑ ( )

1
 with coefficients xi, i  1, ..., n. These works are not covered by 

our definition of a multivariate framework since the underlying OU process for portfolio Pt is still 
univariate.
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with a random variable Jt modeling the jump sizes or

 dXt  − Xtdt + dWt + dCt (23)

with compound Poisson process C J
t k

k

Nt=
=∑

1

and a sequence of independent 
random variables { }J

k k=
∞

1 with common symmetric density .
Table 3 summarizes the relevant works applying a Lévy driven OU model to 

capture the spread dynamics. To the present day, there exist only four academic 
studies in this context.

3.2.1. Analytic approach

Model-driven decisions. Stübinger and Endres (2018) develop a high-fre-
quency pairs trading framework based on a mean-reverting jump-diffusion model. 
The spread Xt follows the jump-diffusion model (22) with varying jump intensity 

(t) such that

l
l

( )t =
0 if the observation is intraday

otherwise (overnight,  weekend)





The authors verify the existence of overnight jumps in their empirical data 
set and therefore consider the jump component ln JtdNt in their model. In the 
formation period, pairs selection is optimized by choosing pairs with highest 
mean-reversion rate  and highest jump intensity . A large mean-reversion rate 
ensures fast convergence to the equilibrium level (t), where pairs trading profits 
are taken. A high jump intensity creates sudden, large spread movements and thus 
many trading opportunities. In the trading period, thresholds vary around the 
mean-reversion level (t) of the process. The main contributions of this study are 
(i) the integration of a jump component into the classic mean-reverting model and 
(ii) the consideration of the model’s mean-reverting patterns and jump behavior 
in both the formation and the trading period.

Optimal trading thresholds. Göncü and Akyildirim (2016a) as well as En-
dres and Stübinger (2019b) determine optimal trading thresholds in the sense 
of Bertram (2010b), hereby explaining the spread dynamics by the Lévy driven 
OU model of equation (21).

Göncü and Akyildirim (2016a) assume that the marginals of the Lévy process 
{Lt}t 0 follow the generalized hyperbolic distribution. The authors consider three 
cases of pairs trading strategies. We summarize them in one framework as fol-
lows. A trader opens a position when the spread crosses threshold a and closes 
the position at threshold m, a < m. 
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At any time T , the return from this trade is
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with m,a  inf{t  0|Xt  m, X0  a}. The investor maximizes the expected value 
of these trading profits

 max ( )( ) ( ( )) [ ]
,

, , ,
a m

m a m a T m aP T m a P T E X a Tt t t< − + − < − >{ }1  (25)

The authors estimate the first passage time probability P ( m,a < T ) via Monte 
Carlo simulation since there is no closed form solution for the first passage time 
density of the Lévy driven OU process available. Based on these Monte Carlo es-
timations, they solve problem (25) and provide trading signals in form of profit 
maximizing thresholds. In contrast to the baseline approach by Bertram (2010b), 
the authors extend the objective function by considering the probability of the 
spread’s divergence (see equation 24). However, the authors do not consider 
transaction costs in their strategy.

Endres and Stübinger (2019b) model the spread dynamics according to equa-
tion (21). An investor opens positions at threshold a and closes at m, a < m.  
The authors follow Bertram (2010b) and maximize the expected return per unit 
of time in their strategy

 max
( , , )

[ ],
,

a m
m a

r a m c

E t
 (26)

for return r(a, m, c)  m − a − c and transaction costs c. Decomposing the 
process {Lt}t 0 into two parts  – {Qt}t 0, representing the downward jumps and 
the Brownian motion, and {Rt}t 0, representing the upward jumps  – there is an 
explicit representation of the expected first-passage time E[ m,a] available. Based 
on this result, problem (26) can be solved directly and the optimal trading bounds 
a and m are obtained. In contrast to Göncü and Akyildirim (2016a), no Monte 
Carlo methods are needed for solving the optimization problem.

3.2.2. Optimal timing of trades  – dynamic programming

Larsson et al. (2013) study the problem of optimally closing a pairs trade when 
the spread Xt is modeled by an OU process extended with a jump component 
(see equation 23). Assuming the investor has already opened a position in the 
spread, the authors consider the following optimal stopping problem

 V x E X
a

( ) sup [ ]=
≤t t

t  (27)
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for a stop-loss level a < 0 and a  inf{t  0 : Xt  a}. In case the spread falls be-
low a, the position is closed in order to limit potential losses. Applying stochastic 
control theory, the authors analyze a numerical method for solving the free bound-
ary problem (27). In the context of Lévy driven OU models, Larsson et al. (2013) 
provide the first study dealing with a stochastic control problem in pairs trading. 
The incorporation of stop-loss levels reduces the risk of model misspecification 
and potential failure of the optimal stopping problem (see Yoshikawa 2017).

To summarize the subsection on Lévy driven OU models, it should be pointed 
out that analytic formulas have not yet been derived in this context. Since the 
process has recently attracted attention, e.g., due to the presence of jumps in 
high-frequency data (see Jondeau et al. 2015), future work should build upon 
the aforementioned studies and provide further closed-form results.

3.3. Regime-switching Ornstein–Uhlenbeck model

Pairs trading strategies typically rely on the spread’s convergence to a specific 
mean. Switches of this mean between different levels lead to failure of traditional 
trading approaches in practice (see Bock and Mestel 2009). Speaking more gener-
ally, it is unrealistic to assume constant model parameters in the long run. This 
drawback is eliminated by regime-switching models  – they consider the change 
of parameters over time based on the theory of Markov processes. The spread in 
the regime-switching OU model follows

 dX

X dt dW R

X dt dW R r

t

t t t

r r t r t t

=
− + =

− + =





q m s

q m s

1 1 1 1( ) ,

( ) ,

for

for






 (28)

and switches between r different regimes (r  ). The continuous-time Markov 
chain {Rt}t 0 describes the regime switching behavior and allows for r different 
states. The random variable Rt denotes the state of the process at time t11.

Table 3 provides an overview of the studies applying a regime-switching OU 
model to capture the spread dynamics. To date, there exist only four works in 
that context.

3.3.1. Optimal trading thresholds  – analytic approach

Bai and Wu (2018) address an optimal investment problem based on a regime-
switching OU model with r different states. The spread Xt evolves according to 

 11 In the special case of only one state, i.e., r 1, the regime-switching model (28) reduces to the clas-
sic OU process.
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equation (28). The authors give a closed-form expression for the pairs trading 
value function, i.e., the expected return per unit of time. This is basically the same 
objective function as in Bertram (2010b) (see equation 6), with the difference 
that r possible states are considered. The authors derive analytic solutions for 
systems of ordinary differential equations and obtain an optimum of the value 
function with trading thresholds a and m, a < m. A trade is entered, when the 
spread Xt crosses one of the thresholds. However, explicit analytic solutions are 
only presented for r  1, i.e., one regime, which is the case without any switch-
ing already considered in Bertram (2010b). Further, the numerical analysis is 
executed only for one-state and two-state regime switching models. For future 
research, it would be interesting to see how the approach works for more than 
two regimes. Moreover, as the authors themselves point out, the pairs trading 
rule is static  – further research could construct dynamic optimal thresholds that 
are more suitable for practical applications.

3.3.2. Optimal investment allocation  – dynamic programming

Altay et al. (2017) focus on dynamic portfolio optimization and derive optimal 
portfolio holdings for an investor with logarithmic utility. The spread Xt is modeled 
by an OU process with Markov modulated mean-reversion level, i.e., the mean 
level switches across r (r  ) different regimes. For a dollar-neutral portfolio of 
two stocks with weights h1(t)  −h2(t), the authors maximize the expected utility 
from terminal wealth, penalized by the riskiness of the portfolio. The optimal 
weight is derived via pointwise maximization as

 h t x i
x

i ri
1 2

1

1

1

2
1*( , , )

( )
, , ...,=

+
−

+ −




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 ∈{ }

e

q m

s
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s

for risk factor   0, correlation , and volatility  of stock 1. It is an interesting 
approach to prevent the trader from taking risky positions by penalizing the 
objective function by the realized volatility. Further, the important problem of 
a constant mean level is addressed, which is unrealistic in practice but still as-
sumed by many studies (see Bock and Mestel 2009). However, there is one main 
downside associated with the model: In contrast to Bai and Wu (2018), only the 
mean level is allowed to switch between the different regimes  – all other model 
parameters, i.e., mean-reversion speed and volatility, remain constant.

3.3.3. Other approaches

This subsection discusses other approaches based on the regime-switching 
OU model beyond analytic and dynamic programming frameworks.

Model-based trading rules. Yang et al. (2016) assume that the spread follows 
equation (28) and is divided into two states: Rt  “high” and Rt  “low”. All model 
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parameters, i.e., , , and , vary across the two regimes. In the formation period, 
the authors select pairs by smallest sum of squared differences. At this point, 
a simple yet promising improvement would be to optimize pairs selection by 
choosing pairs based on model parameters instead of simple distance metrics. In 
the trading period, three rules are implemented  – two classic benchmark rules 
and one rule based on the regime-switching model. In the latter case, the spread 
value is predicted one step ahead from the calibrated model  – if it deviates by 
more than 1.96 standard deviations from its observed value, a position is opened. 
The critical value of 1.96 is chosen in accordance with the 95% confidence interval 
for the normal distribution.

Regime classification algorithm. Endres and Stübinger (2019a) develop 
a regime-switching framework for Lévy driven OU models with different regimes. 
They specify the spread Xt by equation (28), providing the first study that replaces 
the Brownian motion by the Lévy process {Lt}t 0 in a regime-switching frame-
work. As such, the model is capable of explaining fat tails and jumps within the 
individual regimes. All model parameters are allowed to vary across the states. 
Hereby, the number of states is not determined in advance. The authors develop 
a regime classification algorithm that allows the process to switch between a flex-
ible number of regimes. This is in contrast with Yang et al. (2016), who assume 
r  2 regimes in their study, as well as Altay et al. (2017) and Bai and Wu (2018), 
who assume a fixed number of regimes.

To summarize, relatively few studies consider the change of parameters over 
time based on regime-switching models. It should be investigated whether switches 
of parameters are recognized quickly enough in these models to appropriately 
adjust the trading rules (see Bogomolov 2013).

4. Advanced mean-reverting diffusion models

Mean-reverting diffusion models beyond the OU process are Cox–Ingersoll–
Ross (CIR), inhomogeneous geometric Browian motion (IGBM), and stochastic 
volatility (SV) models. These models have a drift term identical to the OU process, 
while the diffusion term is extended  – as such, the disadvantage of constant vola-
tility is overcome (see, e.g., Stehlıková 2008, Chanol et al. 2015). The relevant 
studies are summarized in Table 4.

4.1. Cox–Ingersoll–Ross model

The CIR process overcomes the constant volatility assumption of the OU 
process, and still exhibits the important mean-reverting property. However in 
this model, analytic calculations become more challenging. 
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The spread follows

 dXt  (  − Xt)dt +  XtdWt (29)

with parameters , ,   0 and standard Brownian motion {Wt}t 0. The diffu-
sion term Xt is extended compared to the OU process. In case the process 
approaches zero, the mean-reverting drift term dominates the decreasing diffu-
sion term, ensuring nonnegativity of the process values. However, Avonleghi and 
Davison (2017) point out that negative price spreads are an essential modeling 
feature  – the non-negativity assumption actually stems from modeling interest 
rates, volatility, and prices (see, e.g., Heston 1993) rather than spreads. In practice, 
the disadvantage of non-negativity might present no issue if the long-term mean 
of the spread is far enough from zero.

Table 4

Advanced mean-reverting diffusion models

Model Study

4.1. Cox–Ingersoll–Ross model

Analytic approach

Optimal trading thresholds: Maximum expected 
return and Sharpe ratio per unit of time

Gregory et al. (2010)

Dynamic programming

Optimal timing of trades: Optimal starting-
stopping problem, finite and infinite trading 
horizons

Li (2015), Leung and Li (2016), 
Kitapbayev and Leung (2018)

4.2. Stochastic volatility model

Dynamic programming

Optimal timing of trades: Maximum reward 
function, optimal switching problem

Ngo and Pham (2016), Kitapbayev 
and Leung (2018)

4.3. Inhomogeneous geometric Brownian motion model

Analytic approach

Optimal trading thresholds: Maximum expected 
return and Sharpe ratio per unit of time

Gregory et al. (2010)

Dynamic programming

Optimal timing of trades: Maximum reward 
function, optimal trading boundaries

Ngo and Pham (2016), Kitapbayev 
and Leung (2018)
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4.1.1. Optimal trading thresholds  – analytic approach

Gregory et al. (2010) model spread and ratio dynamics according to the CIR 
model of equation (29). Following Bertram (2010b), the expected trade return  

(a, m, c) and the variance of trade returns 2(a, m, c) are determined by equations 
(6) and (8). With the aid of first passage time results for CIR processes, this leads
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and a return variance 2(a, m, c) derived similarly. (an, b, z) and (an, b, z) 
denote the Kummer’s and Trinomi function (see Zhao 2009). For the spread  
Xt  ln S1(t) − ln S2(t), the trade return is r(a, m, c)  m−a−c and for the ratio 

X
S t

S t
t = 1

2

( )

( )
 it is r̃ (a, m, c)  (e m−ea −c). From these expressions, the authors 

determine the optimal trading strategy by maximizing expected return and Sharpe 
ratio numerically, obtaining the optimum trade levels a and m. The construction 
has one major advantage: Traditional rules of thumb are replaced by optimal trad-
ing signals. However, and in contrast to subsection 2.1.2, no closed-form expres-
sions for the thresholds a and m are provided. From an empirical perspective, it 
would be interesting to discuss the non-negativity assumption and suitability of 
the CIR process for spread modeling.

4.1.2. Optimal timing of trades  – dynamic programming

Li (2015), Leung and Li (2016), and Kitapbayev and Leung (2018) analyze the 
optimal timing to open and subsequently close pairs trading positions. Capital 
is allocated to a mean-reverting portfolio evolving according to a CIR process 
(see equation 29) or a risk-free asset with rate r  0. For an investor who already 
holds a position Xt, e.g., one long and one short asset, the aim is to maximize the 
position’s expected discounted value. As such, the investor solves the following 
optimal stopping problem:

 V x E e X cr
sell( ) sup [ ( )]= −

∈

−

t

t

T
T  (31)

If the position is closed at , the investor receives the value X and pays 
transaction costs csell  0. The entry timing is determined in the optimal starting-
-stopping problem:

 J x E e V X X cr
buy( ) sup [ ( ( ) )]= − −

∈

−

n

n
n n

T

 (32)
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If the position is opened at time , the investor pays transaction costs cbuy  0  
plus the process value X  and receives the expected value V (X ) from optimally 
stopping the process. Li (2015) and Leung and Li (2016) give analytic expressions 
for the value functions (31) and (32) with regard to hypergeometric functions 
and characterize the corresponding optimal trading boundaries. In contrast to 
the majority of studies, the transaction costs cbuy and csell for entry and exit are 
allowed to differ. However, the trader has an unlimited amount of time for open-
ing and closing positions. In practice, it might not be feasible that positions are 
held infinitely. This issue is only partly addressed by discounting the portfolio 
value with the risk-free rate r. In this respect, Kitapbayev and Leung (2018) en-
hance problems (31) and (32) for finite deadlines to enter and exit the market. 
However and in contrast to problems with infinite trading horizon, closed-form 
solutions cannot be derived.

4.2. Stochastic volatility model

In the stochastic volatility (SV) model, the spread Xt follows

 dXt  (  − Xt)dt + (t, Xt)dWt (33)

with a general diffusion term (t, Xt). The SV model is popular because of its 
flexibility, resolving the issue of constant volatility of the OU model and enabling 
better matching to real world data (see, e.g., Ackerer et al. 2018). Further, the 
model includes prominent special cases, i.e., the OU model for (t, Xt)  , the CIR 
model for (t, Xt)  Xt, and the IGBM model for (t, Xt)  Xt. Table 4 provides 
an overview of the relevant studies using a SV model to capture the spread dynam-
ics. As opposed to the previous sections, no analytic approach has been published.

Ngo and Pham (2016) explain the spread Xt by the mean-reverting stochas-
tic volatility model (see equation 33). Pairs trading is considered as a switching 
problem between three regimes: no holding of stocks (i  0), one stock long the 
other short (i  1), and vice-versa (i  −1). The trading strategy is modeled by 

  ( n, n)n 0, consisting of a sequence of trading times ( n)n and n  {−1, 0, 1}  
representing the flat, long, or short position. The investor maximizes the expected 
discounted cumulative gain penalized by the holding of assets over an infinite 
horizon:

 n a a l a
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for gain function g, discount factor   0, initial spread value X0  x, and penal-
izing factor   0. The authors are able to directly derive the structure of the 
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switching regions and the form of the value function  via partial differential 
equations. Hereby, the solutions + and − of the following system need to be  
determined

 
j q m j s j

rf f

( ) ( ) ( ) ( ) ( )x x x x x= − ′ + ′′

− =
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2
0
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 (35)

The solutions of (35) specify the switching regions where trading deci-
sions are executed. Interestingly and in contrast to the majority of studies, the 
optimization problem (34) is extended for no holding of stocks in addition to 
classic long and short positions. Hereby, the flat position is explicitly penalized 
with a factor . Kitapbayev and Leung (2018) consider a similar problem as Ngo 
and Pham (2016). The two main differences are (i) Ngo and Pham (2016) focus 
on cumulated rewards gained by multiple trades, Kitapbayev and Leung (2018) 
consider the discounted reward of one trade cycle, (ii) Ngo and Pham (2016) 
consider a problem over infinite horizon, Kitapbayev and Leung (2018) integrate 
a finite deadline to enter and exit the market  – however, this deadline does not 
allow for closed-form solutions any more.

4.3. Inhomogeneous geometric Brownian motion model

In the mean-reverting IGBM model (also called GARCH diffusion, GBM with 
affine drift), the spread Xt evolves according to

 dXt  (  − Xt)dt + XtdWt (36) 

The diffusion term Xt is non-constant and depends on the process value 
itself. Increasing Xt leads to an increasing volatility. The model is a special case of 
the stochastic volatility model (see equation 33). Table 4 summarizes the relevant 
works applying an IGBM model to explain the spread dynamics.

4.3.1. Optimal trading thresholds  – analytic approach

Gregory et al. (2010) model spread and ratio dynamics by the IGBM model 
(see equation 36). As described in subsection 4.1.1 for the CIR process, the 
authors follow Bertram (2010b) and derive closed-form expressions for two 
pairs trading objective functions  – expected return (a, m, c) and Sharpe ratio  
S(a, m, c, rf ) of the strategy. 
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and S(a, m, c, rf ) similarly. These objective function are maximized numerically 
to obtain the optimum entry and exit bounds a and m. Direct optimization via 
differentiation has only been accomplished for the classic OU process in Bertram 
(2010b) yet.

4.3.2. Optimal timing of trades  – dynamic programming

Ngo and Pham (2016) explain the spread dynamics Xt by the IGBM model (see 
equation 36). The authors identify optimal trading boundaries for a pairs trading 
strategy that aims at maximizing the expected reward (see equation 34). The two 
fundamental solutions for problem (35) in case of the IGBM model are given by
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Based on these solutions, the structure of the switching regions for the IGBM 
model is directly specified. Kitapbayev and Leung (2018) consider a similar prob-
lem  – compared to the case of a stochastic volatility model (see subsection 4.2), the 
optimal trading boundary problem simplifies for the special case of the IGBM model.

To summarize the section on advanced mean-reverting diffusion models, 
there remains a lack of studies that investigate the additional benefits of the CIR, 
IGBM, and SV models in pairs trading. It has not been clearly studied how spread 
modeling as well as pairs selection and trading can be improved with these models.

5. Diffusion models with a non-stationary component

The vast majority of studies models the spread as a stationary mean-reverting 
process. However, spreads may also exhibit non-stationary effects (Bertram 2009, 
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Bertram 2010a, Focardi et al. 2016, Tie et al. 2017). As such, models based on 
stationary time series are not suitable for reliable forecasting and decision making 
(Bertram 2010a). Besides extending the classic OU process by jumps (see subsec-
tion 3.2) and regime-switches (see subsection 3.3), there exist other possibilities 
to incorporate non-stationarity, which are summarized in Table 5 and discussed 
in the following subsections.

Table 5

Diffusion models with a non-stationary component

Model Study

5.1. Geometric Brownian motion model

Dynamic programming

Optimal timing of trades: Sequential buying 
and selling times determined by threshold 
curves

Tie et al. (2017) 

Optimal investment allocation: Optimal 
portfolio holdings under parameter ambiguity

Fouque et al. (2016)

5.2. Two-factor model

Analytic approach

Optimal trading thresholds: Maximum 
expected return and Sharpe ratio per unit of 
time

Bertram (2010a), Gu and Steffensen 
(2015)

5.3. General Itô diffusion model

Analytic approach

Optimal trading thresholds: Maximum 
expected rate of profit under drawdown 
constraint

Bertram (2009)

5.1. Geometric Brownian motion model

According to Tie et al. (2017), limiting research to mean-reverting spreads 
adds a strong restriction on pairs trading strategies and their application. To fulfill 
the mean-reversion requirement, matching of stocks is typically executed among 
assets of the same industry. From a practical point of view, there is a broader 
range of potential pairs with desirable properties beyond the mean-reverting 
pairs. Instead of classic spread modeling, two stocks can be modeled separately 
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by geometric Brownian motions (GBM), dropping the typical mean-reversion 
requirement. The risky assets with prices S1(t) and S2(t) follow
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with two-dimensional standard Brownian motion W (t)  (W1(t), W2(t)). The cor-
relation between S1(t) and S2(t) is regulated by 12  21. In other notation, the 
risky assets follow

 dSi(t)  iSi(t)dt + iSi(t)dWi(t), i  1, 2 (39)

with W (t)  (W1(t), W2(t)) and dW1(t)dW2(t)  dt,   [−1, 1].
Table 5 provides an overview of the studies applying a GBM model to explain 

the spread dynamics. As opposed to the previous sections, no analytic approach 
has been published.

5.1.1. Dynamic programming

Optimal timing of trades. Tie et al. (2017) explain the stock prices S1(t) and 
S2(t) based on GBM models as specified in equation (38). In their pairs trading 
strategy, the authors maximize an overall return by sequential and simultane-
ous trading of stock pairs. It is assumed that the initial position in the spread  
Xt  S1(t) − S2(t) can either be flat (i  0) or long (i  1). For 0  1  2  ..., pairs 
are sold at stopping times 0, 2, ... and bought at 1, 3, ... respectively. A trading 
sequence is denoted by 0  ( 1, 2, ...) for i  0 and 1  ( 0, 1, 2, ...) for i  1. 
For transaction costs c, initial position i  0, discount factor   0, cb  1 + c, and 
cs  1 − c, the reward function J0(s1, s2, 0) is
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and for i  1 it is J1(s1, s2, 1) calculated similarly. The investor solves the optimal 
control problem

 V s s J s s ii i i

i

( ) sup ( , , ), ,,1 2 1 2 0 1= =
L

L

The authors characterize the optimal policy, i.e., the optimal entry and exit 
times, by threshold curves obtained with dynamic programming techniques. 
These curves constitute three regions: selling zone 1, holding zone 2, and 
buying zone 3. A larger correlation between stocks 1 and 2, measured by the 
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parameter 12, leads to greater buying and selling zones and thus more trad-
ing opportunities. Tie et al. (2017) provide a clear value-add to pairs trading 
research  – the authors relax the the typical mean-reversion requirement of the 
spread. Thus, the model includes a broader range of potential pairs with desir-
able properties  – among them still the classic mean-reverting pairs. From a prac-
tical perspective, this offers wider selection possibilities and new opportunities 
in pairs trading. However, there is a downside associated with the GBM model 
to explain the spread dynamics: As in the classic OU model, the assumption of 
constant volatility or correlation is not always appropriate (see, e.g., Mota and 
Esquivel 2016, Avonleghi and Davison 2017). For futher research, Tie et al. (2017) 
suggest to use more realistic models for stock dynamics, e.g., extend the GBMs 
with regime switching12.

Optimal investment allocation. Fouque et al. (2016) study an investment 
allocation problem, in which an investor trades a risk-free asset Mt or two risky 
assets. The amounts invested in the assets are denoted by hi(t), i  0, 1, 2. The 
two risky assets follow the GBM model (see equation 39) with ambiguous cor-
relation t. The wealth of the investor is defined as Xt  h0(t) + h1(t) + h2(t) and 
evolves according to

 dXs  [rXs + hs]dt + [ 1h1(s) 2h2(s)]dWs, Xt  x

for interest rate r, h  [h1 h2] , and excess return vector . The investor maximizes 
the expected utility in the worst-case scenario

 supinf [ ( ) ]
Li

E u X X xT t
r

=  (40)

The authors derive an analytic solution of problem (40) including closed-
form solutions for power and exponential utility. Depending on the covariance 
matrices between the two risky assets and the corresponding variance risk ratios, 
the market is in favor of classic pairs trading or directional trading. Hereby, the 
portfolio selection is robust to the uncertain correlation. In case of low correlation 
between the risky assets, spread trading is not optimal. This is in line with the 
findings of Tie et al. (2017)  – higher correlation encourages greater pairs trading 
activity. Fouque et al. (2016) extend their approach to stochastic volatility models 
with ambiguous correlation and derive an asymptotic closed-form solution. The 
authors provide new directions for continuous-time pairs trading in three respects. 

 12 Göncü and Akyildirim (2014), Göncü (2015), and Göncü and Akyildirim (2017) analyze the exist-
ence of statistical arbitrage based in GBM models for single stocks with extensions for jumps and 
multi-asset frameworks. Their results could be extended for spreads, i.e., portfolios of two stocks, 
one long and one short.
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First, they present the first academic study that considers parameter ambiguity in 
their model. Second, they apply a trading strategy that comprises not only classic 
pairs trading but also other trading variants. Third, and in contrast to Tie et al. 
(2017), they extend their problem to stochastic volatility models, hereby resolving 
the issue of constant volatility in the GBM model.

5.2. Two-factor model

According to several studies (see, e.g., Schwartz 1997, Schwartz and Smith 2000, 
Farkas et al. 2017), more than one factor is necessary to describe uncertain price 
dynamics appropriately. The two-factor model in pairs trading has been proposed 
by Bertram (2010a). The spread Xt is modeled as the sum of a stationary com-
ponent Yt, driving mean-reversion effects in the short-run, and a non-stationary 
component Mt, representing the long-term behavior. Hereby, Yt is modeled by an 
OU process, and Mt by an arithmetic Brownian motion. The spread follows

 

X Y M

dY Y dt dW

dM dt dZ

t t t

t t t

t t

= +
= − +
= +

q s

g h

 (41)

with Brownian motions {Wt}t 0 and {Zt}t 0. This non-stationary model allows for 
mean-reversion of the spread around a stochastic mean level. Table 5 summarizes 
the relevant works applying a two-factor model to capture the spread dynamics. 
Only two studies in this context have been published yet.

They key work is provided by Bertram (2010a)  – the spread Xt is explained 
by the two- factor model of equation (41). The author derives the optimal ana-
lytic pairs trading strategy under the framework described in subsection 2.1.2, 
i.e., trades are entered and exited when the spread crosses trading thresholds 
a and m, a < m. For zero drift, i.e.,   0, and independent Browian motions 
{Wt}t 0 and {Zt}t 0, the author calculates analytic solutions for the expected return  

(a, m, c), variance 2(a, m, c), and Sharpe ratio S(a, m, c) of the strategy. The 
obtained results are almost identical with those for the classic OU process. The re-
turn is derived as

 m
q

p
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and only differs from (a, m, c) for the OU model (equation 9) in a factor of 2. 
The only difference in the variance 2(a, m, c) compared to the classic OU model 
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is an additive term. In empirical examples, the author analyzes the influence of 
the non-stationary noise, represented by the parameter , on the trading strategy. 
When maximizing the expected return, the non-stationary behavior does not have 
any influence on the thresholds. When maximizing the Sharpe ratio, increasing  

leads to strongly widened optimal trading bands  – the strategy requires a higher 
return per trade to compensate the increasing variance. These results emphasize 
two major aspects. First, the trading strategy is strongly affected by non- stationary 
behavior. Second, the choice of a suitable objective function is highly important. 
Summarizing, the model by Bertram (2010a) provides a novelty in continuous-time 
pairs trading  – it has the advantage that non-stationary effects can be captured 
and the model still exhibits mean-reverting behavior. However, the risk-free rate 
rf in the Sharpe ratio is assumed to be zero. Further, the author assumes zero 
drift and uncorrelated Brownian motions when deriving analytic formulas  – as 
such, the model properties reduce to those of the classic OU process. It would 
be interesting to consider the model with non-zero correlation as it is studied for 
commodities in Schwartz and Smith (2000). Gu and Steffensen (2015) also pro-
pose a two-factor model, where the spread reverts to a stochastic mean level (t). 
However, the authors do not further specify trading rules based on this model.

5.3. General Itô diffusion model

In the general Itô diffusion model, the spread follows

 dXt  (t, Xt)dt + (t, Xt)dWt (43)

with drift term (t, Xt) and diffusion term (t, Xt). In this model, the spread is 
not necessarily mean-reverting. The powerful stochastic differential equation (43) 
incorporates the majority of stochastic spread models as special cases, i.e., classic 
OU, CIR, SV, IGBM, GBM, nonlinear mean-reverting, and skew mean-reverting 
model. To the present day, the only study considering a general Itô diffusion 
model to explain the spread dynamics is provided by Bertram (2009) (see Table 5).

Bertram (2009) examines the construction of an optimal analytic trading 
strategy under a drawdown constraint when the spread follows a general Itô diffu-
sion process (see equation 43). Positions are entered and exited when the spread 
crosses the boundaries a and m, a < m  – an analog construction is described 
in subsection 2.1 for the classic OU process. The total trade time is the time 1 
taken from entry to exit plus the time 2 taken to enter a new trade. The optimal 
strategy is determined by maximizing the expected rate of profit

m t( , , ) ( , , ) [ / ] ( ) ( ; , )a m c r a m c E m a c
t

f t m a dt= = − −
∞

∫1
1

0
 (44)
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Hereby, the density f of the total trade time needs to be specified. The cu-
mulative distribution function for the first passage time has the following form

 G t x t
t

p x t x t dta m
a

m

[ , ]( , ) ( , , )0 0 0 01
1

= − ∫
for transition densities p(x, t|x0, t0) satisfying the Fokker–Planck equation
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Since the total trading time can be expressed in terms of Fokker–Planck equa-
tions, i.e., partial differential equations, the optimization problem can be solved 
numerically without necessity of simulation based methods. As opposed to the 
classic OU process, the general Itô diffusion does not allow for analytic results. 
The author presents two measures for the trade drawdown, i.e., the maximum 
negative market-to-market return during a trade, and suggests to incorporate 
them as constraints in the optimization problem. Summarizing, Bertram (2009) 
applies a powerful and flexible stochastic spread model, which includes a mul-
titude of special cases. Hereby, the study reveals the following directions for 
further research. First, considering trade drawdown in the strategy is promising 
and has yet been integrated only by Bertram (2009) and Temnov (2015). Second, 
the author himself suggests to apply the strategy to the continuous-time random 
walk (CTRW), which is more realistic since it is non-Gaussian13.

6. Other models

This section summarizes other models with a limited set of supporting lit-
erature. The respective studies are listed in Table 6.

6.1. Doubly mean-reverting model

Liu et al. (2017) introduce a “doubly mean-reverting” model for intraday 
trading strategies, which is constructed as follows. In the first step, the long-term 
stochastic trend of the spread Xt, denoted by Lt, is modeled as a stochastic process. 
Specifically, Lt follows an OU process with mean 0

 dL L dt dWt L t L t
L= − +q s  (46)

 13 Osmekhin and Déleze (2015a) and Osmekhin and Déleze (2015b) use a CTRW for spread modeling. 
In this way, they overcome the drawback of the normal distribution. Their model can be seen as 
a generalization of the GBM with fat tails.
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Table 6

Other models

Model Study

6.1. Doubly mean-reverting model

Analytic approach

Model-driven decisions: Optimizing formation and 
trading period

Liu et al. (2017)

6.2. Nonlinear mean-reverting model

Dynamic programming

Optimal investment allocation: Optimal portfolio 
holdings under logarithmic utility

Alsayed and McGroarty (2013)

Other approaches

Principal component analysis: Multi-factor approach Avalon et al. (2017)

6.3. Skew mean-reverting model

Analytic approach

Trading framework: Skewness, heavy tails,  
and nonlinear mean-reversion

Avonleghi and Davison (2017)

In the second step, Xt is modeled via a mean-reverting process around Lt us-
ing the conditional modeling technique. Specifically, the spread Xt follows

 dX L t X dt dWt t t= − +q s( ( ) )  (47)

with mean process L t
L Li i( ) =

+− −2 2 2 1

2
 and daily opening and closing values L2i−2 

and L2i−1 of Xt for day i, i  1, ..., N. As such, it is assumed that during any trading 
day, the spread reverts to the average of the current day’s opening value and the 
previous day’s closing value  – a plausible, yet very restrictive assumption. The 
model is justified from a pairs selection perspective  – pairs with stable Lt and 
volatile Xt are suitable pairs for trading.

Liu et al. (2017) optimize the pairs trading strategy based on the calibrated 
model of equations (46) and (47) in two respects. In the formation period, pairs 
are selected by high short-term and low long-term model variance. Trading can-
didates thus produce many trading opportunities while being stable in the long-
run. In the trading period, a pairs trade is opened, when the spread deviates by 
from Lt, where is the 98% percentile of the absolute daily change in Lt in the past 
100 days. The position is closed when the spread reverts back to its mean level. 
Compared to existing studies, Liu et al. (2017) include two main improvements 
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in their model. First, the spread reverts around a stochastic mean instead of 
a constant level or a linear function of time. Second, the stochastic long-term 
mean is itself a mean-reverting process, which distinguishes their work from the 
two-factor models in subsection 5.2. For further research, there are three main 
issues. First, future work should calibrate the stochastic mean level to a more 
complex function or process, replacing the simple step function calculated from 
daily opening and closing values. Second, the threshold is parametric and should 
instead be optimized by the model. Third, the authors themselves suggest to 
replace the Brownian motion by a more general Lévy process.

6.2. Nonlinear mean-reverting model

In a nonlinear generalization of the classic OU process (see Wong 1964, 
Alsayed and McGroarty 2013), the spread Xt evolves according to

 dX
c

c X dt dWt t t= − − +
q

m stanh( ( ))  (48)

with parameter c  0 modeling the nonlinearity of mean-reversion. For c  0, the 
model reduces to the OU process with mean-reversion rate  and mean level .

The nonlinear model of equation (48) differs from the classic OU model as 
follows. In the classic OU model, the mean-reversion strength increases linearly 
when the spread deviates from its mean. Consequently, the larger the deviations 
are, the more attractive the investment opportunities become. This is dangerous 
if spreads deviate far from their mean and the mean-reverting property actually 
does not persist (see Avalon et al. 2017). In the nonlinear OU model instead, 
the mean-reversion rate increases less when the spread deviates from its mean. 
Consequently, large deviations become more risky and less interesting.

Table 6 provides an overview of the relevant works applying a nonlinear 
mean-reverting model to capture the spread dynamics. As opposed to the previ-
ous sections, no analytic approach has been published.

Optimal investment allocation. Alsayed and McGroarty (2013) solve a port-
folio optimization problem for an investor that allocates capital to a spread Xt, 
following equation (48), or a risk-free asset with rate r. The number of units held 
in the spread is denoted by ht. An investor with logarithmic utility solves the fol-
lowing portfolio optimization problem:

 max [ln ]
h

t
t

E V

with wealth Vt. The optimal strategy is derived in closed form as follows:

 h X V
c X rX

Vt t t
c t t

t( , )
tanh( ( ))

=
− − −q m

s2
 (49)
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An analog specification of the optimal portfolio holdings for the classic 
OU model is derived in Jurek and Yang (2007), see equation (12). Due to the 
nonlinearity of mean-reversion in the nonlinear model, the capital allocation to 
diverging spreads is reduced compared to the classic OU model  – losing trades are 
unwound sooner and the optimal portfolio holdings (see equation 49) decrease. 
Alsayed and McGroarty (2013) present the first academic study that explains the 
mean-reverting spread in a nonlinear model. As such, they provide an interesting 
new direction in pairs trading, yielding insights into the behavior of investors, 
especially concerning the capital allocation when large mispricings occur.

Principal component analysis. Based on the nonlinear OU process (48), 
Avalon et al. (2017) use a multi-factor statistical arbitrage model which incor-
porates methods such as principal component analysis and k-means clustering. 
To calculate the optimal portfolio allocation to a pair, the authors use equation 
(49) for the nonlinear OU process and equation (12) derived by Jurek and Yang 
(2007) for the classic OU process as a benchmark. Compared to previous studies, 
the authors do not rely only on price data but also include time-series data on 
fundamentals in order to select better pairs for trading. As such, key contribu-
tions in this promising framework are the consolidation of multiple approaches 
and the integration of additional fundamental factors beyond classic price data.

6.3. Skew mean-reverting model

Avonleghi and Davison (2017) introduce another nonlinear generalization 
of the classic OU process. The spread Xt follows

 dX
X

X
dt dWt

t

t

t= −
+









 +q m s

2
 (50)

and is mean-reverting for −1 <  < 1 with mean-reversion rate , volatility , 
standard Brownian motion {Wt}t 0, and a long-run mean depending on all model 
parameters. According to Avonleghi and Davison (2017), the two main advantages 
of the model for pairs trading are the following. First, it is capable of capturing 
kurtosis and skewness in the transition density of the spread  – both well-known 
stylized facts of financial data. Second, the strength of mean-reversion does not 
increase linearly as the process diverges away from its equilibrium level  – in-
stead, a slower increase of the mean-reversion strength compared to the classic 
OU process reflects the risk of diverging spreads. Despite the model’s flexibility 
compared to the classic OU process, it does not have an analytic transition density 
and numerical methods need to be used for parameter estimation.

In the pairs trading literature, this flexible model has only been applied once 
by Avonleghi and Davison (2017) (see Tab. 6). The authors provide analytic results 
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concerning the solution of the process as well as its stationary distribution. How-
ever, the development of a specific trading strategy is left for further research.

7. Conclusion

We have provided a comprehensive literature review of stochastic differential 
equations in statistical arbitrage pairs trading. The key findings and potential gaps 
regarding the five major spread models can be summarized as follows.

Section 2 covers the OU model to explain the spread dynamics  – the majority 
of surveyed studies uses this model. The advantages are tractable analytic solutions, 
e.g., explicit trading thresholds derived by Bertram (2010b), optimal portfolio 
weights derived by Jurek and Yang (2007) and Mudchanatongsuk et al. (2008), 
and the ability to model mean-reversion. However, stylized facts of financial return 
series, especially in high-frequency settings, require extended stochastic spread 
models beyond the classic OU model.

Section 3 focuses on extended OU models. Correlations among multiple 
spreads are incorporated in multivariate OU frameworks. To the present day, 
there remains a lack of studies in this context, even though multivariate model-
ing is highly relevant from a practical perspective. The existence of jumps and 
fat tails is taken into account by Lévy driven OU models. Many studies confirm 
the non-normality of spread series, especially on small time scales (see Jondeau 
et al. 2015, Liu et al. 2017, Stübinger and Endres 2018). As such, Lévy driven 
OU models constitute an important extension of classic OU models driven by 
Brownian motion. However, in pairs trading they only emerged over the past 
few years. Research should aim at achieving further closed-form results for these 
Lévy driven OU models. Regime switching OU models are attractive since the 
allow parameters to vary across regimes. Just like the Lévy driven OU models, 
they only arose recently in continuous-time pairs trading and not much re-
search has been done in that area. For further research, the suitability of such 
models in the high-frequency context should be analyzed. Bogomolov (2013) 
doubts whether it is possible to recognize switches and new parameters of the 
spread process quickly enough to adapt the trading strategy to changing market  
conditions.

Section 4 covers advanced mean-reverting diffusion models, i.e., CIR, IGBM, 
and SV models, which provide increased flexibility in the diffusion term of the 
model while their drift term is identical to the OU process. However, there remains 
a lack of literature exploiting this advancement and justifying the selection of 
these models for pairs trading. It should be investigated whether the CIR model 
including the property of non-negativity is applicable for stock price spreads from 



110

Sylvia Endres

an empirical point of view. Then, analytic formulas, e.g., provided by Gregory 
et al. (2010), should be applied to large empirical data sets. Further, the advanced 
mean-reverting diffusion models could be extended from a model-perspective, 
e.g., by incorporating Lévy noise or regime-switching.

Section 5 focuses on diffusion models with a non-stationary component. Ber-
tram (2009) introduces non-stationary spread models for continuous-time pairs 
trading to explain effects besides the classic mean-reversion property. However 
for non-stationary time-series, it is more difficult to distinguish extreme events, 
which trigger entry and exit decisions in pairs trading, from non-stationary shifts 
in the data (see Bertram 2010a). Recently, Fouque et al. (2016) and Tie et al. 
(2017) drop the classic mean-reverting property of pairs trading and model two 
stocks separately by GBMs. This provides a new direction in pairs trading and 
expands the range of potential pairs with desirable properties beyond the classic 
mean- reverting pairs. For further research, the GBM model could be expanded 
for a regime- switching component as proposed by Tie et al. (2017) or for a jump 
component as presented in Göncü and Akyildirim (2014). The two-factor model 
gains attention recently (see, e.g., Farkas et al. 2017 and Hahn et al. 2018), pro-
viding additional flexibility by allowing for two stochastic factors, e.g., short-term 
variations and long-term behavior. The two factors can be estimated from two 
different data bases (see Schwartz and Smith 2000). As such, the model is par-
ticularly interesting when considering additional data besides classic stock prices, 
e.g., sentiment, fundamentals, or cryptocurrency data. The general Itô diffusion 
model is highly flexible and includes many special cases  – however, it has only 
been considered once in literature by Bertram (2009).

Section 6 covers other models with a limited set of supporting literature. In 
recent years, several studies have exploited new models beyond the classic ones, 
e.g., the doubly mean- reverting model by Liu et al. (2017), the nonlinear mean-
reverting model by Alsayed and McGroarty (2013), and the skew mean-reverting 
model by Avonleghi and Davison (2017). These models seem promising since 
they eliminate drawbacks of the classic OU process, which has been thoroughly 
discussed for more than a decade now. Further work should focus on the spread’s 
fat tails, especially in high-frequency settings, combined with potential further 
factors that drive price dynamics.

Overall, we have comprehensively and critically reviewed the existing literature 
on stochastic differential equations in statistical arbitrage pairs trading  – clearly, 
there remain gaps for further research and future studies. While the class of classic 
OU models has been extensively investigated, other models have only gained at-
tention in recent years. Given the five main categories of stochastic spread models 
identified in this paper, there still exist other models apart from the aforemen-
tioned, e.g., two- and three-factor models with additional stochastic components.
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