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1.	 Introduction

With the elapse of time, financial markets have become more and more cor-
related. The respective literature presents different channels that have caused 
these interlinkages. Across financial markets, these mutual dependencies could 
reflect the similarities in industrial structure, monetary integration, bilateral trade, 
and geographical proximity. An empirical fact is that there is no unique economic 
determinant in supporting the integration of financial markets across different 
countries. However, from empirical observations, it follows that countries in close 
geographical proximity are more interlinked than countries in different regions

The empirical fact is that, after the introduction of the euro, the return 
correlations among the developed markets as well as European economic and 
monetary union (EMU) stock markets increased considerably. The empirical 
observations confirm that these higher dependencies have stabilized since the 
introduction of the euro. 

During financial crises, losses tend to spread across financial institutions, 
thus affecting the financial system as a whole. Systemic risk measures capture 
the potential losses for the spreading of financial distress across institutions by 
capturing this increase in tail co-movement. 

To present this concept, Adrian and Brunnermeier (2011) developed the 
CoVaR method. To emphasize the systemic nature of their risk measure, they 
add the measures the prefix Co to the existing risk (which stands for conditional, 
contagion, or co-movement).
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Dynamic factor models were developed in the eighties as a result of the needs 
by policy makers with respect to the forecasts of key macroeconomic variables; 
these models were based on small sets of time series, usually no more than ten 
enabled forecasts (especially in short-term situations). The quality of these fore-
casts was even better than the quality of forecasts by structural models or DSGE 
models. The most-important class of these models were those that allowed the 
processing of data exhibiting different frequency and time series with missing 
data. These models enabled us to reflect the dynamics and main dependencies 
among key macroeconomic variables. 

Thus, these models were even used as reference models by central banks, 
international institutions, and state offices responsible for macro policies. In the 
current century, the researchers elaborated the new approach of modeling within 
one structure of time series collected with different frequency – the so-called 
regression models with mixed frequencies of sampling (MIDAS – Mixed Data 
Sampling Regressions). In the first step, these models were simple one-equation 
structures. However, further models captured multiple structures. They assured 
the modeling of unobservable components. 

The main goal of this contribution is a comparison of the risk measures used 
in financial theory and practice and their applications to risk assessment in the 
banking sector.

The next section features an overview of the literature. The following chap-
ter presents the methodology used in the empirical part of this contribution. 
In Section 4, the empirical results are reported. The last section concludes 
the paper.

2.	 Literature

In the financial literature, systemic risk measures are the subject of intensive 
research. Acharya et al. (2010) introduced the Systemic Expected Shortfall (SES) of 
a financial institution. This is its propensity to be undercapitalized when the system 
as a whole is undercapitalized. In the same paper, one of the most-widely-used 
systemic risk measures was introduced; i.e., Marginal Expected Shortfall (MES). 
This measure expected losses when a market declines beyond a given threshold. 
The application of this measure can be found in Banulescu and Dumitrescu (2015), 
Benoit et al. (2013), Popescu and Turcu (2014), and Brownless and Engle (2012), 
among others. CoVaR introduced by Adrian and Brunnermeier (2011) corresponds 
to the Value at Risk of the market return obtained conditionally on an event for 
a given institution. They defined the contribution of the institution to systemic risk 
as the difference of the two values of CoVaR. Benulescu and Dumitrescu (2015) 
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proposed CES, a forward-looking method that encompasses MES. The empirical 
applications show that CES is relatively stable over time. 

Popescu and Turcu (2014) transposed s systemic-risk approach to the Eu-
rozone members by adapting those measures initially developed for the market 
risk to sovereign debt risk. 

The proper forecast of future volatility is one of the main problems with 
respect to risk management and asset allocation. In the economic literature, it is 
well documented that volatility depends strongly on time and the different factors 
causing this time variation. 

The MIDAS regression model was developed by Anderou and Ghysels (2004) 
and Ghysels et al. (2006a, 2006b). It allows data from different frequencies to 
be introduced into the same model. This approach enables a combination of 
high-frequency returns with macro-finance data that are only observed at lower 
frequencies (such as monthly or quarterly).

Engle and Rangel (2008) applied this technique to the GARCH framework 
to form the spline GARCH model. The GARCH-MIDAS modelis a combination of 
the spline GARCH framework and the volatility decomposing approach (comp. 
Ding and Granger, 1996; Engle and Lee, 1999; Bauwens and Storti, 2009; Amado 
and Teräsvirta, 2013) It was introduced by Engle et al. (2012). The advantage of 
this model is that it allows us to incorporate information on the macroeconomic 
environment into the long-run component. 

Baele et al. (2010) and Colacito et al. (2011) used the MIDAS technique to 
the DCC model of Engle (2002). They decomposed the co-movement of stocks 
and bonds into short-run and long-run components.

The GARCH-MIDAS model is used in Conrad and Loch (2011) to investigate 
the relationships between long-term market risk (for US data) and the macro-
economic environment. They show that macro variables carry information on 
stock market risk and have a predictive ability for long-term volatility forecasting.

Asgharian et al. (2013) examined the information contained in large group 
of macroeconomic data. They showed that including low frequency macroeco-
nomic data in the GARCH-MIDAS model improves the forecasting ability for the 
long-term variance component.

In a more-recent contribution, Conrad et al. (2014) use the GARCH-MIDAS 
model in order to decompose the stock returns into short-run and long-run 
components. They examined the long-run volatility component using economic 
factors. The DCC-MIDAS model is extended by allowing macro-finance variables 
to enter the long-run component of the correlation of crude oil and stock returns. 
They found that the behavior of the long-term correlation is counter cyclical.

The novelty of our contribution is the application of MIDAS models in 
the assessment of risk measures. To model the secular component, we used 
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monthly realized volatility approximated as a sum of the squares of daily returns. 
Another possibility to model the long-run component is to use macroeconomic 
data; however, it was not available to the authors and may be a basis for future 
research.

In the next section, we describe the methodology used in risk measurement 
(MES and DCoVaR) and the GARCH-MIDAS and DCC-MIDAS models. 

3.	 Methodology

MES and ΔCoVaR

We consider two popular measure of systemic risk. The first is defined in 
Acharya et al. (2010) and is based on the concept of Expected Shortfall. Consider 
the conditional Expected Shortfall computed at time t (given the information up 
to time t – 1):

	
ES C E r r C w E r r Cm t t mt mt
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=

−∑1
1

1|

where rmt and rit are the returns of the market and asset (bank), respectively. 
Threshold C defines the distress event, while wit is the weight of Firm i in the 
financial system. Given the risk of system measured by ESm,t(C), its marginal con-
tribution of Firm i is called the Marginal Expected Shortfall:
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and measures the increase in a system’s risk resulting from a marginal increase 
in weight wit. The second measure is ΔCoVaR, which is based on the concept of 
Value-at-Risk (Adrian and Brunnermeier, 2011). Suppose ℂ(rit) is some event for 
Asset i. Then, CoVaR at confidence level α corresponds to conditional VaR of the 
market return:

	
P r rmt t
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The difference between the CoVaR at level alpha and CoVaR computed in 
the median state is denoted as ΔCoVaR (Benoit et al., 2013):
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MES and ΔCoVaR can be calculated with various approaches. In this paper, 
we consider the bivariate GARCH model of Brownless and Engle (2012):

	 r Ht t t= 1 2/  	  (1)

where rt = (rmt, rit)′ is the vector of demeaned returns and ϵit = (emt, xit)′ is the 
vector of i.i.d. shocks with zero means and an identity covariance matrix. The 
time varying covariance matrix is defined as:
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where σmt and σit are conditional standard deviations of the market and asset, 
whereas rit is the conditional correlation between rit and rmt.

Following (1) and (2), we can formulate the following equations:

	 rmt = σmtemt,

	
rit it it mt it it it= + −σ ρ ε σ ρ ξ1 2 	 (3)

	 ϵit = (emt, xit)′ ~F

It is worth mentioning that the asset return can be described as:
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risk measure βit. From (3), we can express MESit as:

	

MES C E r r C E C
it t it mt it t it mt it it mt

mt
( ) = <( ) = + − <

− −1 1
21| σ ρ ε ρ ξ ε σ|




=

= <




+ − <− −σ ρ ε ε σ σ ρ ξ εit it t mt mt

mt
it it t it mtE C E1

2
11| | CC

mtσ






 



170

Henryk Gurgul, Roland Mestel, Robert Syrek

that is as a function weighted by the tail expectations of the standardized residu-
als of the market and asset, respectively. Similar to Benoit et al. (2013), we now 
set threshold C equal to the conditional Value-at-Risk of the market return (given 
information ℱt–1 available up to time t – 1):

	
P rmt mt tVaR α α( )( ) =− 1  

In their paper, Benoit et al. (2013) showed that MESit is proportional to the 
systemic risk measured by the time varying beta, where the proportionality coef-
ficient is the expected shortfall of the market:

	
MES ESit it mtα β α( ) = ( )  

They showed that, given (3) and defining conditioning event rit = VaRit(α), 
ΔCoVaR can be expressed as follows:

	
∆CoVaR it it it itVaR VaRα γ α( ) = ( ) − ( ) 0 5.  

with γit = ritsmt/sit.

Both MES and ΔCoVaR require the estimation of the conditional standard 
deviations, conditional correlation, and tail expectations. For this purpose, 
Brownless and Engle (2012) use the TARCH and DCC models for modeling the 
standard deviations and correlation. Tail expectations Et–1(emt|emt < C/smt) and 
Et–1(xmt|emt < C/smt) are estimated with nonparametric estimators (Sciallet, 2005) 
with Gaussian kernel:
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where c = C/smt and h = T–1/5.
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In order to model the standard deviations and correlations, Brownless and 
Engle (2012) use the TARCH and DCC models. In this paper, we use the GARCH-
MIDAS and DCC-MIDAS models described in the next section.

GARCH-MIDAS and DCC-MIDAS models

Following Engle et al. (2013), we assume that univariate returns tjt (on day j 
in period t) follows the GARCH-MIDAS process:

	
r g i Nj t t jt jt t, , ,= + ∀ = …µ τ ε 1 	  (4)

where Nt is the number of days in period t and ejt|ℱi–1,t ~ N(0, 1). Short-run vola-
tility component git follows the mean-reverting GARCH(1,1) process:
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whereas long-run volatility component tt is smoothed realized volatility:
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does not change within a time span (period, month), and the weighting shame 
is based on beta polynomials with weights w1, w2, and parameter K:
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We adopt the restricted beta weighting scheme. The weights are computed as:
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For w > 1, this guarantees a decaying pattern (slow or rapid) depending on 
the values of w (small or large).

The GARCH-MIDAS model is used to model the conditional deviations of rmt 
and each asset return rit. Natural extension is the DCC-MIDAS model of Colacito 
et al. (2011) in which as the input standardized residuals from the GARCH-
MIDAS models are taken. The (i, j) element of quasi-correlation matrix Qt has 
GARCH(1,1)-like dynamics:

	
q a b a bqijt ijt i t j t ij t= − −( ) + +− − −1 1 1 1ρ ε ε, , ,  

where a > 0, b ≥ 0 and a + b < 1. 

In the equation above, ri j t, ,  represents element (i, j) of long-run quasi-
correlation matrix rt:
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that is the weighted sum of sample correlation matrices ct–k.
Finally, the correlation matrix (rescaled quasi-correlation matrix to obtain 

unity on the diagonal) is defined as follows:

	
R diag Q Q diag Qt t t t= { } { }− −1 2 1 2/ /

4.	 Empirical results

We consider the prices (in euros) of the EURO STOXX BANKS index with 
18 components of this index. Although the index contains 25 components, we 
excluded some of them (a list of the banks used in this paper is given in the ap-
pendix). First, we excluded the series due to the sample size. The second reason 
was the large number of zero returns (more than 10%). The dataset covers the 
period of January 2002 through June 2017. As usual, we computed the logarithmic 
return percentage as rt = 100 · (lnPt – lnPt–1) and descriptive statistics of returns. 
The mean of the return index is equal to −0.018 with a standard deviation of 
2.000. The skewness equals to –0.032, and the kurtosis is 10.567. The high value of 
the kurtosis results in the non-normality formally confirmed with the Jarque-Bera 
test. As expected, we observed significant autocorrelation (from the Ljung-Box 
test with 15 lags). In Table 1, we present the statistics of all banks under study.
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Table 1

Descriptive statistics

Statistics Mean Std Skewness Kurtosis pLB pJB

min −0.08 1.83 −1.26 6.63 0.00 0.00

q1 −0.03 2.27 −0.19 10.33 0.00 0.00

med −0.01 2.64 −0.07 10.67 0.00 0.00

q2 0.00 2.84 0.17 13.12 0.00 0.00

max 0.02 4.34 0.55 44.34 0.10 0.00

Source: own elaboration

The statistics are similar to those of the returns index. We observed a departure 
from normality for all banks and insignificant autocorrelation in only two cases.

Using the methodology presented in the previous sections, we estimated 
the models that were used to calculate the risk represented by MES and 
ΔCoVaR (during this estimation, we use the Midas Matlab Toolbox by Hang 
Qian). We used periods of 22 days to compute the monthly realized volatility 
and 36 lags in Equation (3). The conditional Value-at-Risk of the market return 
(threshold or conditioning event) is computed with a 95% confidence level. In 
Figure 1, we present VaR for the bank BAMI (top) and index (bottom) along 
with the returns.

Figure 1. Value at Risk for BAMI and index
Source: own elaboration
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In the Table 2, we present a ranking of banks according to the systemic risk 
measures from the Midas-type models (to save space, we omitted the tables with 
parameter estimates; details are available from the authors upon request).

The ranks (in descending order) refer to the last values of these measures in 
our sample (columns on the left) and mean values for year 2017 (two columns 
on the right). We consider the absolute values of MES and ΔCoVaR (these mea-
sures are typically negative). The higher values of these measures, the higher the 
individual contribution of the bank to the risk of the financial system.

Table 2

Ranking of banks according to systemic risk measures from Midas-type models

Rank MES ΔCoVaR MES ΔCoVaR

1 BAMI ING BAMI SAN

2 UCG BNP UCG BNP

3 KN DBK DBK ING

4 SAN BBVA GLE GLE

5 DBK GLE CBK BBVA

6 GLE SAN BIRG DBK

7 ACA ACA MB ISP

8 CBK UCG ISP CBK

9 BNP MB ACA MB

10 MB BKT BNP ACA

11 BBVA CBK SAN UCG

12 EBS ISP KN BKT

13 SAB KN SAB KBC

14 ING KBC BBVA SAB

15 ISP BAMI ING KN

16 BIRG SAB EBS BAMI

17 KBC EBS KBC EBS

18 BKT BIRG BKT BIRG

Source: own elaboration

The rankings resulting from both measures are different. In the top-five-riskiest 
banks, we can find only Deutsche Bank in both cases. BAMI is at the top of the table 
according to MES and is in 15th place in the ΔCoVaR ranking. A similar conclusion 
can be made for ING. Regarding first five places, only DBK can be found in both 



175

MIDAS models in banking sector – systemic risk comparison

columns. In the case of banks from the bottom of Table 2, we observe that BIRG 
and KBC are together in the last five places. When regarding the mean values, 
we observe some degree of similarity especially for the bank from the bottom of 
the table and from the top for the MES column. In Figures 2 and 3, we present 
the computed values of both measures for bank BAMI.

Figure 2. ΔCoVaR for BAMI from Midas-type models
Source: own elaboration

Figure 3. MES for BAMI from Midas-type models
Source: own elaboration
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Additionally, we estimated the models used in Benoit et al. (2013), which are 
the GJR(1,1) models for conditional volatilities and standard DCC(1,1) with the 
bivariate normal distribution model for conditional correlation. In the Table 3, 
we present the rankings from these models (according to last values in the time 
series of systemic risk).

Table 3

Ranking of banks according to systemic risk measures from GJR-DCC models

Rank MES ΔCoVaR MES ΔCoVaR

1 BAMI BBVA BAMI SAN

2 KN BNP UCG BNP

3 DBK DBK DBK GLE

4 UCG SAN GLE BBVA

5 GLE UCG BIRG ING

6 BNP GLE CBK UCG

7 ACA ING BNP DBK

8 SAN CBK ACA ISP

9 CBK ISP KN CBK

10 BBVA BKT ISP ACA

11 ISP ACA MB MB

12 ING MB SAN KBC

13 EBS KN ING SAB

14 BIRG BAMI BBVA BKT

15 KBC KBC SAB KN

16 MB SAB KBC BAMI

17 BKT EBS EBS EBS

18 SAB BIRG BKT BIRG

Source: own elaboration

The conclusions about the congruence of ranks is similar when standard 
models are applied. The bank from the top according to ΔCoVaR (BBVA) is 
tenth according to MES, but DBK and KBC take the same places in both columns 
(regarding the values from the end of the sample). For the mean values of mea-
sures, we can identify a coincidence of ranks (BAMI and DBK for MES and BNP 
for ΔCoVaR) and banks (KN) that are placed in different rows.
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From Tables 2 and 3, we can identify the most- and least-systemically-important 
banks. These banks can be found in the first few and last few rows of both tables, 
respectively. Banks BAMI, SAN, UCG, and BNP are simultaneously at the top of the 
table, and BKT, BIRG, and EBS are at the bottom. The results from both models 
are the same if we consider the highest values of the measures. In Tables 4 and 5, 
we present the highest and lowest mean values (respectively) of the systemic risk 
measures for the last ten years. 

Table 4

 Banks with highest mean values of MES and ΔCoVaR during years of 2007–2017

Model MIDAS GJR-DCC

year MES ΔCoVaR MES ΔCoVaR

2007 BNP DBK KN BNP

2008 ING DBK ING SAN

2009 BIRG SAN BIRG SAN

2010 BIRG SAN BIRG SAN

2011 ISP BBVA ISP SAN

2012 UCG BBVA UCG SAN

2013 BAMI BBVA BAMI SAN

2014 BAMI BBVA BAMI SAN

2015 BAMI BBVA UCG BBVA

2016 BAMI BNP BAMI SAN

2017 BAMI SAN BAMI SAN

Source: own elaboration

Table 5

 Banks with lowest mean values of MES and ΔCoVaR during years of 2007–2017

Model MIDAS GJR-DCC

year MES ΔCoVaR MES ΔCoVaR

2007 SAB KN SAB BIRG

2008 MB BIRG MB BIRG

2009 SAB BIRG SAB BIRG

2010 SAB BIRG SAB BIRG

2011 SAB BIRG SAB BIRG
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Model MIDAS GJR-DCC

year MES ΔCoVaR MES ΔCoVaR

2012 SAB BIRG SAB BIRG

2013 BIRG BIRG KN BIRG

2014 DBK BIRG DBK BIRG

2015 KBC BIRG KBC BIRG

2016 BKT BIRG BKT BIRG

2017 BKT BIRG BKT BIRG

Source: own elaboration

We observe that, according to MES (with one exception – year 2015), BAMI 
refers to the highest values over the last five years. The information from ΔCoVaR 
is not as clear. Actually, two banks represent the highest values; those are BBVA and 
SAN from 2009 (with one exception). Regarding the lowest values of risk measures, 
we observe a coincidence of bank rankings between two models over the last ten 
years (with only two exceptions). For the last two years, BKT and BIRG are simulta-
neously at the bottom of the table. From Proposition 1 in Benoit et. Al (2013), we 
know that identifying SIFIs using MES is equivalent to comparing the betas of banks. 
In Figure 4, we present the estimated values of the betas for banks BKT and BAMI.

Table 5 cont.

Figure 4. Betas for banks BKT and BAMI from Midas-type models

Source: own elaboration
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5.	 Conclusions

The aim of this contribution is to apply MIDAS models in the assessment 
of risk measures in the banking sector. The modeling of systemic risk is an 
important issue in the financial literature. The successful use of MIDAS models 
in risk determination is value added of this contribution. The authors mod-
eled the secular component by using monthly realized volatility calculated as 
a sum of squares of the daily returns. The promising option in modeling the 
long-run component of the risk and correlation is the application of macro-
finance factors. Unfortunately, the necessary macroeconomic data with respect 
to volatility and correlation modeling was not available to the authors. Further 
research should be directed at finding the most-appropriate macro-finance 
factors with respect to volatility and correlation modeling that can influence 
systemic risk assessment.
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Appendix

Bank Symbol

BANCO SANTANDER SAN

BNP PARIBAS BNP

ING GROEP ING

BBV.ARGENTARIA BBVA

INTESA SANPAOLO ISP

CREDIT AGRICOLE ACA

SOCIETE GENERALE GLE

UNICREDIT UCG

DEUTSCHE BANK (XET) DBK

KBC GROUP KBC

NATIXIS KN

ERSTE GROUP BANK EBS

BANCO DE SABADELL SAB

COMMERZBANK (XET) CBK

BANK OF IRELAND BIRG

BANKINTER ‚’R’’ BKT

MEDIOBANCA BC.FIN MB

BANCO BPM BAMI


