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1. Introduction

The properties of the time series of durations between consecutive trades of 
a particular stock have been studied by many contributors in the literature of finan-
cial econometrics. Among them are highly prominent scientists like Engle (2000) 
and Gourieroux and Jasiak (2001). The importance of this topic, accompanied by 
the growing availability of (ultra-)high-frequency data, has prompted an increase 
of contributions in recent years. Intensive research based on high-frequency 
data has several financial motivations. First of all, it is linked with microstructure 
theory. Secondly, it contributes to the literature on stochastic time deformation. 
But the most important need for research on the dynamics of trade durations is 
the necessity to manage liquidity risk. The reason is that durations between the 
following trades are a widely accepted measures of market liquidity. In addition, 
their volatility reflects the liquidity risk. 

The results of empirical investigations of trade durations suggest several 
stylized facts typical of high-frequency data. The knowledge of empirical facts 
is a precondition of the proper specification of econometric models. The most-
important stylized facts include positive serial autocorrelations and clustering 
effects; i.e., the propensity of extremely long durations and extremely short-to-
build clusters; the persistence of dependence in time; i.e., autocorrelations tend 
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to decrease slowly, which indicates the possible existence of long memory. Fur-
ther features are significant nonlinearities in the dynamics, reflected in nonlinear 
autocorrelograms. In addition, in high-frequency data, there is path-dependent 
(under-)overdispersion in the conditional distribution. Moreover, one can detect 
significant departures from an unconditional exponential distribution, negative 
duration dependence, and fat tails. In order to take into account these empirical 
facts, the researcher should assume flexible specifications for conditional mean 
and conditional variance. This is necessary for the proper management of liquid-
ity risk. In many situations, extreme liquidity risks must be calculated. In this 
case, the first conditional moments may not be enough. Therefore, for some 
research questions, measures that reflect the entire conditional distribution are 
advisable. According to Ghysels et al. (2004), this situation may occur in the case 
of Time-at-Risk (TaR(t)). Time-at-Risk denotes the minimal time without a trade 
that can take place with a given probability. The mentioned measures need the 
most-flexible specifications possible for the entire conditional distribution of the 
duration process. 

One the most-frequently used dynamic models for intertrade durations is 
the famous Autoregressive Conditional Duration (ACD) model formulated by 
Engle and Russell (1998). This model involves an accelerated hazard specifica-
tion with conditional mean that underlines a deterministic autoregression. As 
demonstrated by Ghysels et al. (2004), the different stylized effects observed 
in the data can be replicated in the framework of the ACD. The drawback of 
this specification is the number of restrictive assumptions on the conditional 
distribution of the duration process. In this model, the dynamics of the con-
ditional mean determines the dynamics of conditional moments of any order 
and of liquidity risk measures (e.g., TaR(t)). However, most of these restric-
tions are not reflected in empirical facts. The reason is that they imply a path-
independent conditional dispersion. Moreover, they are not necessary for the 
management of liquidity risk. In order to avoid these problems, Ghysels et al. 
(2004) suggested a new specification of accelerated hazard. They derived the 
Stochastic Volatility Duration (SVD) model. In this model, the authors included 
two underlying factors; the conditional mean and conditional variance follow 
two independent dynamics. 

The main goal of our paper is to analyze the dependence structure between 
duration and trading volume visible in high-frequency data.

 The remaining part of the paper is scheduled as follows. In the following 
section, we give a brief literature overview that focuses on known empirical 
results concerning duration in the framework of the microstructure dynamics 
of tick-by-tick stock data. Section 3 outlines the basics of models of duration 
and dependence measures based on copulas. In the fourth section, we provide 
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descriptive statistics of the intraday dataset and then present empirical results 
(especially on the dependence between duration and trading volume reflected 
in intraday data). Finally, we draw conclusions.

2. Literature overview

Over the last two decades, an essential part of the literature devoted to 
market microstructure has analyzed intraday prices and the process of their 
formation. De Jong and Rindi (2009), like many other authors, focused on 
theoretical deliberations especially concerned with market structure and market 
designs. The most important question was the impact of these factors on intra-
day price formation. In recent years, intraday high-frequency data has become 
increasingly available. Therefore, contributors started to empirically test some 
of the known theories of market microstructure. It was also possible to model 
the observed facts within the intraday price dynamics. Empirical studies on trad-
ing volume in the US equity markets (based on tick-by-tick data) showed the 
intraday behavior of stock prices. Engle (2000) found that the biggest increase 
in the volume of transactions takes place at the opening and closing of the 
market, so there is a U-shaped pattern of volatility over the day. The financial 
literature provides evidence that, for traditional stock price models, the size 
of time intervals is usually not important on long-time scales. However, for HF 
data modeling, this observation is not true. Diamond and Verrechia (1987), 
Easley and O’Hara (1992), Engle and Russell (1998), Engle (2000), Dufour and 
Engle (2000), Manganelli (2005), and Cartea and Meyer-Brandis (2010) show 
that, at high frequencies, the duration between trades supplies relevant infor-
mation about the dynamics of tick-by-tick trades, including the behavior of the 
market, activity of uninformed or informed traders, volatility of price changes, 
and implied volatility from the option markets.

Therefore, duration (being a random variable) is one of the most important 
factors in stock-price behavior. It is extremely important over short periods of 
time. This random variable was frequently neglected in the past in most asset-
pricing models with horizons of a few days or more. The reason for this was 
the widespread conviction that any effect of durations is dissipated very quickly. 
However, at present, the majority of trades are conducted by algorithmic trading 
processing information on a tick-by-tick level. Nowadays, duration is widely ac-
cepted as an essential random variable supplying important information about 
the behavior of the stock market over short-time intervals. 

From a statistical point of view, the calendar-time distribution of stock price 
dynamics on small scales of time depends on both the distribution of price 



244

Henryk Gurgul, Robert Syrek, Christoph Mitterer

changes and the distribution of duration. The aim of trading strategies is to profit 
from recognized price patterns and behavior over ever-shrinking scales of time. 
Empirical observations show that the speed of trading has shortened by a fac-
tor of 10 in the last five years. Trading very quickly over short periods of time 
has become the main kind of trading (including algorithmic trading). There are 
many factors that support the expansion of algorithmic trading. One of them is 
the introduction of limit order markets. The second factor arises from changes 
in market structure. Both factors have lowered the entry barriers to new partici-
pants. In recent years, the capacity of computers has significantly increased. At 
the same time, its cost has significantly decreased. This has resulted in a rise in 
the number of market participants as well as a significant increase of the speed 
at which trading takes place. 

The econometric literature on duration starts with the paper of Engle 
and Russell (1998), who derive the autoregressive conditional duration (ACD) 
model to capture the time of the arrival of financial data. Based on this seminal 
work, most contributors tried to generalize the ACD framework in different 
directions. The best-known of these are the logarithmic model of Bauwens 
and Giot (2000) and the extended class of models by Fernandes and Gram-
mig (2005). Other extensions are based on regime-shifting and mixture ACD 
models, presented in Maheu and McCurdy (2000), Zhang et al. (2001), Meitz 
and Terasvirta (2006), and Hujer et al. (2002). A more-recent paper by Renault 
et al. (2012) suggests a structural model for the durations between events and 
associated marks. A detailed review of different ACD models is given in Bau-
wens and Hautsch (2009).

Cartea and Jaimungal (2013) stress the role of algorithmic trading (AT) and 
high-frequency (HF) trading (which is responsible for over 70% of the US stock 
trading volume). In the opinion of the contributors, both kinds of trading have 
greatly changed the microstructure dynamics of tick-by-tick stock data. The authors 
employ a hidden Markov model to examine changes in the intraday dynamics of 
the stock market. They try to find out how to exploit this information to develop 
the best trading strategies at high frequencies. The contributors demonstrate 
how to employ their model to submit limit orders and to profit from the bid–ask 
spread. They also provide evidence on how HF traders may profit from liquidity 
incentives (liquidity rebates). Based on data from between February 2001 and 
February 2008, they demonstrate that, while in 2001, the intraday states with the 
shortest average waiting times between trades (durations) were also the ones with 
very few trades; in 2008, the vast majority of trades took place in the states with 
the shortest average durations. In addition, the authors claim that, in 2008, the 
states with the shortest durations had the smallest price impact as measured by 
the volatility of price innovations.
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3. Methodology

In our paper, we use the dynamic parametrization of the conditional mean 
function (Engle and Russell, 1998)

 ( )ψ = ψ θ = θ: [ | ; ]i i i iE x

where i stands for the information set including the observation from ti – 1 (dura-
tion xi between two events noticed at times ti – 1 and ti), and θ stands for vector 
of parameters. 

The standardized durations 

 ε =
ψ

i

i

i

x

are the sequence of independent and identically distributed random variables with 
E[εi] = 1. The reasons for the variation in autoregressive conditional duration 
models are different choices of functional form for the conditional mean function 
and the selection of the distribution of standardized durations.

The most-common specification suggested by Engle and Russell (1998) is 
linear parametrization. 

Bauwens and Giot (2000) suggest two extensions of the linear ACD model. 
These models (known as logarithmic ACD) are of the forms 

 − −
= =

ψ = ω + α ε + β ψ∑ ∑
1 1

ln ln
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and 
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ln
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In our contribution, we call these specifications LACD1 and LACD2, respec-
tively. In these models, there are no sign restrictions on parameters to ensure the 
positivity of conditional duration.

We restrict our attention to cases where P = Q = 1, which is sufficient in our 
analysis. In this case, inequality α + β < 1 ensures the existence of an uncondi-
tional mean of duration of the ACD model. The covariance-stationarity of LACD1 
is ensured by |β| < 1, whereas for LACD2, we have |α + β| < 1.

Another specification that researchers have to choose is the distribution for 
standardized durations. In their seminal paper, Engle and Russel (1998) study 
exponential and Weibull distributions (the exponential distribution is used in 
a quasi-maximum likelihood estimation). 

In our contribution, we are going to fit generalized gamma, Burr distributions, 
and q-Weibull to the tick-by-tick data for selected German companies. The formula 
for the density of the generalized gamma distribution is given in Lunde (2000), 
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whereas Gramming and Maurer (2000) consider properties of the Burr distribu-
tion. The exponential and Weibull distributions are special and limiting cases.

The q-Weibull distribution is considered by Vuorenmaa (2009) with density

 ( ) ( ) ( )
α −

α−
α
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 and for our purposes 1 < q < 2 and α > 0.

When q = 1, the q – Weibull distribution includes the standard Weibull 
distribution, and for α = 1, it is equivalent to an exponential distribution. 
Similar specifications of models and distributions are used by Gurgul and Syrek  
(2016).

The series of trading volumes have similar characteristics to the duration 
series. For this reason, trading volume series can be modeled with ACD-type 
models. Following Manganelli (2005), we call these models ACV- autoregressive 
conditional volume models.

We now turn our attention to the contemporaneous dependence between 
modeled variables. 

The analysis of dependence can be performed with different tools. In our 
research, we use quantile dependence and copulas. The strength of dependence 
measured by “quantile dependence” (in the joint lower or upper tails) is defined as:
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where U1t and U2t are probability integral transforms. The estimators of quantile 
dependence are as follows
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Using a quantiles dependence function, it is possible to test for (under the 
null) symmetric dependence (Patton, 2012) q = 1 = q for every q  [0,1]. To 
perform the test, the estimated quantile dependence measures are stacked in 
vector ̂   with qk = j = 1 – qj, for j = 1, 2, ..., k. The test is

 H0 : R  = 0

against
 H1 : R   0

with R  [k  – Ik].
The test statistics proposed by Rémillard (2010) is based on bootstrap. Under 

the null, we have

 −′ ′ ′− − →χ1 2
,

ˆ ˆ( ) ( ) ( )
d

S kN R RV R R

where V ,S denotes the bootstrap estimate of V  (for more details, see Patton (2013)).

Copulas are multivariate distributions with uniform margins. Sklar’s theorem 
states that every multivariate distribution can be decomposed into two parts: mar-
ginal distributions and copulas that describe the dependence structure. There are 
many functional forms of copulas (see Nelsen, 1999). The usfulness of copulas 
comes from the disadvanages of the classic measure of dependence; i.e., Pearson’s 
correlation coefficient. This measure is appropriate only in the case of elliptical 
distributions and measures only linear dependence (which is rather rare in real-
world applications). One of the alternativies is to use concordance measures; for 
example, Kendall’s coefficient, which is the probabability of concordance minus 
the probability of disconcordance, and can be expressed as

 ( ) ( )τ = −∫∫
1 1

1 2 1 2

0 0

4 , , 1C u u dC u u

Kendall’s τ coefficient is invariant under strictly increasing transformations, 
and this is not true in general for a linear correlation coefficient. 

Obtaining the limit of (population) quantile dependence, we get measures 
of the dependence between extreme events; that is, tail-dependence coefficients. 
Formally for any copula C, we have
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The specific copulas exhibit the degree of tail dependency. For example, 
a normal copula and Frank copula exhibit tail independence, whereas a t copula 
exhibits symmetric dependence. A Gumbel copula describes upper tail dependence 
and lower tail independence, whereas a Clayton copula describes the opposite 
pattern of dependence.

4. Empirical results

Our contribution is based on the tick-by-tick transactions of some DAX30 
companies. The dataset includes the prices of companies from 2013-08-08 to 
2013-09-24 (33 trading days). First, we calculate price durations whose threshold 
equals a 10-tick size. The overnight durations and durations corresponding to 
events recorded outside regular opening hours (9:00 to 17:30) are removed. We 
sum the number of shares traded within each price duration (trading volume, 
hereafter).

Table 1 shows the order statistics of the main descriptive statistics of plain-price 
durations and trading volumes. In addition, we include the values of Ljung-Box 
test statistics with 15 lags.

Table 1

The order statistics of plain-price durations and trading volumes (number  
of observations [N], mean, standard deviation, minimum, quantiles, maximum,  

and Ljung-Box test statistic)

Price durations

statistics min 0.25q median 0.75q max

N 1077 2509 3294 6361 10095

Mean 102.76 162.46 312.65 413.02 888.49

S.D. 140.43 241.79 434.57 524.06 1374.20

min 1 1 1 1 1

0.25q 21.0 27.0 52.0 80.8 133.0

Median 56.0 77.3 164.5 243.8 414.0

0.75q 129.0 198.5 392.0 539.5 1134.0

Max 1858.0 3548.8 5788.5 7763.5 18606.0

LB(15) 250.255 627.168 1312.157 2930.819 5816.247
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Trading volume

statistics min 0.25q median 0.75q max

N 1077 2509 3294 6361 10095

Mean 2351.86 8143.40 17903.64 56331.64 104757.02

S.D. 5689.24 14761.75 39404.04 82783.48 212405.76

min 1 3 21.5 42 880

0.25q 659 2301.625 4977 14682 36362

Median 1377 4949.75 10710.75 33119 70740

0.75q 2795.5 9782.375 21270 69070.06 131853

Max 273766 673582 1723156 2406367 8396198

LB(15) 12.84 32.64 65.00 119.86 1226.44

In both types of series, the results are in line with stylized facts about dura-
tion data. In the time series under study, both overdispersion and autocorrelation 
are shown. The series of price durations show a diurnal pattern. Many authors 
have noticed the intraday seasonality in a duration series called diurnality. Similar 
to Bauwens and Giot (2000) and Vuorenmaa (2009), we apply cubic splines to 
discover diurnal patterns. We set the nodes every 60 minutes. Two additional 
nodes are set ten minutes after the opening and ten minutes before close (in 
the case of non-positive adjusted durations, we introduced some modifications 
of node positions). In Table 2, we present the descriptive statistics of diurnally 
adjusted price durations and trading volumes (plain durations series divided by 
seasonal component).

Table 2 

The order statistics of adjusted price durations and trading volumes (number  
of observations [N], mean, standard deviation, minimum, quantiles, maximum,  

and Ljung-Box test statistic)

Price durations

Statistics Min 0.25q Median 0.75q Max

N 1077 2509 3294 6361 10095

Mean 1.020 1.033 1.039 1.050 1.103

Table 1 cont.
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Price durations

statistics min 0.25q median 0.75q max

S.D. 1.094 1.206 1.245 1.323 1.476

min 0.001 0.002 0.002 0.003 0.005

0.25q 0.182 0.241 0.255 0.268 0.303

Median 0.521 0.619 0.630 0.675 0.704

0.75q 1.283 1.338 1.358 1.385 1.426

Max 9.813 12.087 17.104 19.429 26.497

LB(15) 170.032 349.404 600.670 1346.109 3056.831

Trading volume

statistics min 0.25q median 0.75q max

N 1077 2509 3294 6361 10095

Mean 1.012 1.030 1.040 1.046 1.119

S.D. 1.043 1.145 1.241 1.419 1.714

min 0.001 0.001 0.001 0.004 0.017

0.25q 0.273 0.315 0.331 0.361 0.397

Median 0.591 0.651 0.674 0.716 0.759

0.75q 1.216 1.293 1.320 1.349 1.386

Max 11.827 17.548 23.852 39.406 76.195

LB(15) 36.980 78.002 268.750 378.102 1016.003

By construction, the mean of the adjusted series should be close to 1. The 
price durations have the well-known inverted U-shape type pattern for all days 
of the week, so we observe increasing activity at the beginning and end of the 
session. With the trading volumes series, we found instead an inverted V-shape 
pattern, but only on Friday (the peak is between 13:00 and 15:00). In Figures 1 
and 2, we present typical shapes of diurnal patterns. 

Table 2 cont.
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Figure 1. Diurnal pattern of price durations (Adidas)
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Figure 2. Diurnal pattern of trading volumes (BASF)

The autocorrelation of price duration series is now reduced (but not elimi-
nated). In the case of trading volume series, there is no such reduction (surpris-
ingly, we noticed a rise in some autocorrelation coefficients for some lags).
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The estimation of the parameters of ACD and ADV models is carried out by the 
maximum likelihood method. We fitted different models combining conditional 
mean and distribution function. It turned out that the restriction P = Q = 1 is 
sufficient to describe the series characteristics mentioned above. The selection 
of models that best fit a given company is done by the Bayesian Information Cri-
terion. We restricted our attention to the models that describe autocorrelation 
properly, and have uniformly distributed probability integral transforms (Diebold 
et. al. 1998). We checked this with the Ljung-Box test (applied to residuals and 
their squares) and the Anderson-Darling test (in testing for the uniformity of prob-
ability integral transform). In Table 3, we present the results of the estimation of 
conditional duration models.

For all of the series under study, the mean and standard deviation of re-
siduals properly reflects characteristics from the descriptive statistics of adjusted 
durations. In most cases, the model that fits best is ; only in three cases is linear 
parametrization better. The sum of parameters α and β of the ACD model reflects 
the stationarity of the duration process, but the large value (at least 0.95) of this 
sum confirms the stylized fact of clustering of the durations. The same conclu-
sions apply to the logarithmic model. Regarding the conditional distribution of 
residuals, there is no outstanding distribution. The test of parameter significance 
indicates a strong rejection of exponential and Weibull distributions.

Similar conclusions are drawn from the estimation results for trading volume 
series (Tab. 4). In four cases, linear parametrization fits better than logarithmic, 
and the small p-values in significance parameter testing reject exponential and 
Weibull distributions.

To obtain information about dependence structure st, we simply apply the 
sample Kendall’s correlation coefficient for standardized residuals of price dura-
tions (pt) and volumes (vt). In Table 5, we also present the computational results 
for lagged variables. Numbers in bold indicate significance at a 5% level.

The dependence measured by the correlation coefficient is strong and sig-
nificant only for contemporaneous variables. For the pair price duration – lagged 
trading volume, the dependence is significant but very weak in most cases. The 
results for the third pair indicate that the variables are uncorrelated. Next, we 
estimate quantile dependence and perform the test of symmetry (having in mind 
that this is only a test of the necessary condition for equality). Only in the case 
of companies Allianz, EON, Muenchner Rueck, and Thyssen do we fail to reject 
the null of symmetric dependence. The p-values based on 500 bootstrap samples 
equals at least 0.10. This concerns only contemporaneous dependence. If at 
least one variable is lagged, we fail the null for all companies. Figure 3 presents 
typical plot of price durations and associated trading volumes (transformed with 
estimated conditional distributions).
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Table 3

Models for price durations

Company Model Dist. LB(15) A-D  S
1 2

 Adidas         ACD G-G 0.27 0.48 1.00 1.15 0.04 0.13 0.84 1.73 0.69

 Allianz        LACD1 Burr 0.81 0.63 1.02 1.11 0.08 0.17 0.82 1.22 0.23

 BASF          LACD1 G-G 0.07 0.55 1.00 1.15 0.07 0.14 0.93 2.74 0.57

 Beiersdorf       LACD1 q-Weibull 0.08 0.59 1.01 1.13 0.07 0.11 0.85 1.03 1.11

 BMW          ACD G-G 0.05 0.48 1.00 1.14 0.04 0.14 0.83 1.88 0.67

 Commerzbank      LACD1 G-G 0.19 0.51 1.01 1.45 0.13 0.20 0.89 3.52 0.43

Deutsche_Lufthansa   ACD G-G 0.08 0.80 1.02 1.10 0.06 0.17 0.78 2.05 0.66

EON          LACD1 Burr 0.78 0.51 1.02 1.28 0.07 0.13 0.90 1.04 0.17

Muenchner Rueck    LACD1 G-G 0.48 0.70 1.02 1.04 0.06 0.13 0.95 1.93 0.72

RWE          LACD1 Burr 0.10 0.77 1.01 1.17 0.11 0.18 0.72 1.16 0.25

SAP          LACD1 q-Weibull 0.27 0.54 1.01 1.25 0.08 0.15 0.92 1.20 1.25

Thyssen        LACD1 q-Weibull 0.10 0.33 1.08 1.66 0.20 0.34 0.84 1.07 1.23

VW LACD1 q-Weibull 0.07 0.88 1.01 1.27 0.10 0.17 0.96 1.16 1.26

LB(15) denotes the value of the Ljung-Box test statistics applied to residuals. In A-D column is p-value in GOF testing, param-
eters µ1 and µ2 refer to κ and γ for generalized gamma distribution, κ and σ2 for Burr distribution, and a and q for q-Weibull 
distribution, respectively; ε denotes mean of residuals, whereas Sε is standard deviation of residuals
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Table 4

Models of trading volumes

Company Model Dist. LB(15) A-D  S
1 2

Adidas              LACD1 q-Weibull 0.90 0.31 1.00 1.85 0.07 0.11 0.89 1.34 1.35

Allianz                LACD1 G-G 0.84 0.95 1.01 1.02 0.05 0.12 0.68 8.75 0.38

BASF                   LACD1 G-G 0.98 0.37 1.01 2.02 0.05 0.11 0.92 7.67 0.36

Beiersdorf             LACD1 Burr 0.75 0.28 1.00 1.30 0.05 0.09 0.88 1.42 0.50

BMW                    LACD1 Burr 0.95 0.07 0.99 1.31 0.06 0.11 0.91 1.35 0.48

Commerzbank            LACD1 G-G 0.10 0.76 1.00 1.18 0.05 0.10 0.96 6.83 0.36

Deutsche_Lufthansa     ACD q-Weibull 0.41 0.56 0.99 1.00 0.04 0.08 0.89 1.53 1.32

EON                    LACD1 Burr 0.07 0.20 1.00 1.19 0.06 0.13 0.86 1.42 0.50

Muenchner Rueck        LACD1 q-Weibull 0.70 0.85 1.00 1.01 0.06 0.10 0.60 1.54 1.30

RWE                    ACD q-Weibull 0.80 0.96 1.00 1.22 0.33 0.16 0.54 1.44 1.33

SAP                    LACD1 Burr 0.66 0.07 1.01 1.64 0.06 0.12 0.87 1.40 0.48

Thyssen                ACD G-G 0.20 0.55 1.03 1.00 0.20 0.13 0.68 7.24 0.42

VW  ACD q-Weibull 0.41 0.56 0.99 1.00 0.04 0.08 0.89 1.53 1.32

LB(15) denotes the value of the Ljung-Box test statistics applied to residuals. A-D shows p-values in GOF testing, parameters 
µ1 and µ2 refer to κ and γ for generalized gamma distribution, κ and σ2 for Burr distribution, and a and q for q-Weibull distri-
bution, respectively; ε denotes mean of residuals, whereas Sε is standard deviation of residuals
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Table 5

Sample Kendall’s correlation coefficients

Company  p
t
 – v

t
p

t
 – v

t – 1 p
t – 1 – v

t

Adidas 0.40 –0.03 0.02

Allianz 0.57 –0.04 0.02

BASF 0.44 –0.04 –0.01

Beiersdorf 0.37 –0.04 –0.01

BMW 0.41 –0.03 –0,02

Commerzbank 0.48 –0.05 0,05

Deutsche_Lufthansa 0.41 –0.03 0.00

EON 0.52 –0.05 –0.03

Muenchner Rueck 0.49 –0.04 –0.03

RWE 0.41 –0.04 –0.01

SAP 0.47 –0.01 0.00

Thyssen 0.48 –0.05 0.07

VW 0.46 –0.07 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Figure 3. Price durations and trading volumes



256

Henryk Gurgul, Robert Syrek, Christoph Mitterer

We observe the concentration of points is in the upper-right corner, (that 
is, for simultaneously large values of both series). To gain more insight into the 
dependence structure, we use copula functions. Given the PIT series obtained 
from the ACD and ACV models, we use a maximum-likelihood method to estimate 
the parameters of copula functions. This one is the IFM method of Joe and Xu 
(1996). To select the copulas that fit best, we use the BIC criterion. The results 
of parameter estimation are in Table 6. In addition, we present dependence 
measures based upon the copula selected. 

Table 6

Copula estimation results and dependence measures

Company Copula L U

Adidas Gumbel 0.37 0.00 0.46

Allianz t 0.55 0.31 0.31

BASF Gumbel 0.41 0.00 0.50

Beiersdorf Gumbel 0.34 0.00 0.42

BMW Gumbel 0.38 0.00 0.47

Commerzbank Gumbel 0.46 0.00 0.54

Deutsche_Lufthansa Gumbel 0.39 0.00 0.47

EON t 0.50 0.25 0.25

Muenchner Rueck t 0.47 0.25 0.25

RWE Gumbel 0.38 0.00 0.46

SAP Gumbel 0.45 0.00 0.53

Thyssen t 0.46 0.11 0.11

VW Gumbel 0.44 0.00 0.53

Contemporaneous price durations and associated trading volumes are de-
pendent (as can be seen from the values of the Kendall correlation coefficient). 
In addition, the Gumbel copula fits best for most cases that exhibit positive up-
per tail dependence and lower tail independence. The coefficient of upper tail 
dependence equals at least 0.46 (for Adidas and RWE). In the remaining cases, 
elliptical copula t fits the data best. These results are in line with results from 
testing for symmetry using quantile-dependence measures. In these cases, the 
lower and upper tail dependence coefficients are equal and relatively low as 
compared to a nonsymmetrical copula. For the case of the lagged variable, the 
independence copula fits the best.
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5. Conclusions

In this paper, we show the usefulness of the copula function in the descrip-
tion of the dependence structure of specific unevenly spaced time series. The 
behavior of the time series of price durations and trading volumes under study 
are in line with common observation from other empirical findings. We observe 
clustering, overdispersion, and diurnality. In most cases, the seminal model 
(linear parametrization with exponential or Weibull distribution) is displaced by 
a logarithmic specification with more-flexible conditional distributions. The price 
duration and trading volume associated with this duration are dependent in the 
tails of distribution. We may conclude that high cumulative volumes are associated 
with long durations, but also that dependence between short durations and low 
cumulative volumes can be observed. This is concerned with contemporaneous 
variables. For the case where one of the variables is lagged, we conclude that the 
dependence (if any) is very weak.
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